NASA CONTRACTOR
-~ REPORT

~12u228) ALLSHALL

w e (R - e ATIT0N (L .
(NESB=CAT I Cqpp STRULAL-FT -5 COLP.)
T L anS B - A - qricncex - " .
NASA CR“EFOTEM anuar (computef SEE cs5CL 4B
Uonh

A
Y

138 ¢ HC & 1.0
i

MARSHALL SYSTEM FOR AEROSPACE SYSTEM
SIMULATION (MARSYAS), |
USER'S MANUAL

By A. Ventre, R. Sevigny, W. McCollum, and T. Balentine
Computer Sciences Corporation -

8300 S. Whitesburg Drive

Huntsville, Alabama 35802

July 1, 1973

Prepared fer

§73-26232

gnclas
58312

oy

(WY

~
-
-

NASA-GEORGE C. MARSHALL SPACE FLIGHT CENTER

Marshall Space Flight Center, Alabama 35812

NATION
TONAL TECHNICAL
INFORMATION SERVICE -

U.S. DEPARTMENT OF COMM
SPRINGFIELD, VA. 'ZZISIERCE "

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED
FROM THE BEST COPY FURNISHED US BY
THE SPONSORING AGENCY. ALTHOUGH IT
IS RECOGNIZED THAT CERTAIN PORTIONS
ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE
AS MUCE INFORMATION AS POSSIBLE.

TECHNICAL REPORT STANDARD TITLE F’AGE(

(1. REPORT NO, 2. GOVERNMENT ACCESS!ON NO. 3. RECIPIENT'S CATALOG NO.
NASA CR-124288
4, TITLE AND SUBTITLE 5. REPORT DATE

Marshall System for Aerospdce System Simulation (MARSYAS), July 1, 1973

! 6. PERFORMING ORGANIZATION CODE
User's Manual

e

7. AUTHOR(S) 8. PERFORMING ORGANIZATION REPORT &
A, Ventre, R, Sevigny, W. McCollum, T. Balentine : Technical Report #1
9. PERFORMING ORGAN!IZATION NAME AND ADDRESS 10. WORK UNIT NO.

Computer Sciences Corporation P
8300 S, Whitesburg Drive 1LN§§gT¥fgsg '
Huntsville, AL 35802

e

13, TYPE OF REPORY & PERIOD COVERED

112. SPONSORING AGENCY NAME AND ADDRESS Contractor Report

National Aeronautics and Space Administration

Washington, D. C. 20546 4. SPONSORING AGENCY CODE

1S5, SUPPLEMENTARY NOTES

Work performed for Computation Laboratory, Science and Engineering Directorate

16, ABSTRACT : This document describes the capabilities of the Marshall System for Aero-
space System Simulation (MARSYAS) and how to use it.

The Marshall System for Aerospace System Simulation (MARSYAS) is a software system
that allows easy setup and control of the simulation of the dynamics of large physical
systems on a digital computer, It is particularly suited to the engineer who has little
experience in simulation and computer programming. The physical systems are modeled in
the form of block diagrams or equations. The blocks can have multiple inputs and multi-
ple outputs, and they can be nested to form hierarchies. The block diagrams can contain
transfer functions, nonlinear and logical functions, equations, analog computer elements
and FORTRAN programs. The input format of the equations can be combinations of non-
linear, time~varying differential equations and algebraic equations in their original
format. MARSYAS could also serve as a storage and retrieval system for models as a
basis for a "model configuration control" system on a central time-shared computer. The
language allows a standard description of models and easy modification of models stored
in a library using descriptive names as in engineering drawings. The outputs of the
simulation system can be not only time-responses but also other analysis data such as
frequency response, power spectrum and stability parameters.

Several integration modes can override the standard mode, Algebraic loops and dis-
continuities are identified and solved automatically.

The MARSYAS translator is written in FORTRAN running on the UNIVAC 1108 computer
under the EXEC 8 operating system.

17. KEY WORDS 18. DIiﬁEIBUTI;h STATEMANT éfy
Digital Simulation /) % 2!
Computer Language i @f Kgféfé?ﬁ?? K
Software A ﬁ; Hoélzer

Computation Techniques Director, Computation Laboratory

Unclassified-unlimited

19. SECURITY CLASSIF, (of thie reporty 20. SECURITY CLASSIF, (of this page) 21, NO. OF PAGES

U v 177

MSFC - Form 3292 (Rev December1972) [O\'For sale by National Technical Informaiion Service, Springfield, Virginia 2‘_2 151

PREFACE

The Marshall System for Aerospace System Simulation (MARSYAS) has
been developed under the direction of Dr. H, Trauboth and has been in
use at the Marshall Space Flight Center for more than two years. The
software system is written in FORTRAN for the UNIVAC 1108/EXEC 8 computer
system and is now available for public use under file number MFS 22 672
at the NASA computer program library

COSMIC

112 Barrow Hall
University of Georgia
Athens, GA 30602

Publications explaining the mathematical foundation of MARSYAS can
be found in the Reference,

For further information concerning the material in this manual
contact:

Dr, Heinz Trauboth

Chief, Systems Analysis Branch

National Aeronautics and Space Administration
Computation Laboratory

George C. Marshall Space Flight Center ,
Marshall Space Flight Center, Alabama 35812

Telephone (205) 453-1397

or

W. L, McCollum

Project Leader, Senior Computer Scientist
Aerospace Systems Center

Computer Sciences Corporation

8300 S. Whitesburg Drive

Huntsville, Alabama 35802

Telephone (205) 453-2232

TABLE OF CONTENTS

I. INIFRODUCTION TO MARSYAS . . & ¢ 4 & o o o o s e ¢ o s o o 6
A. General Description of MARSYAS . ¢ ¢ ¢ ¢ o o« o » o ¢ = 7
B. The MARSYAS Programming SYStem . « o o o o s o o o o « 10
C. MARSYAS Program Control Statements 11
D. The Structure of the MARSYAS Language . « + + ¢ + . . . 12
E. How to Use MARSYAS - Basic Ideas . o+ o« v o« o« ¢« o« « » » 15
F. A Sample Problem . . o ¢ & o o % o o o 5 o » ; e o« o o 23

G. MARSYAS MATH REFERENCE . & &+ ¢ 4 ¢ o ¢ o o o o o & « « 30

1I. MODULAR STRUCTURE OF MARSYAS 4 4 «o ¢ o o o o o o o o o ¢« o 34
A. Description Module . . ¢ ¢ & o ¢ ¢« v ¢ « ¢« o o o« & o &« 35

COMMENT Statement . o o o o « o ¢ o o « o o « « o « 38
CONNECT « o o o o o o s o o o o o o s o o o o o o &« 39
DEVICE 4« 4 o o « o s o o o o s o o o ¢ o o o o o » 4#5
DISCONNECT 4 4 o o o o o o.¢ o o o o o« s o o o &« o 50
ELEMENTS & & o o ¢ o o o o o o o o o ¢ o o o o » o b5l
EQUATION: « o o o o 2 o o s o o o o o s o o o o o o« 54
INPUTS & o o o o o o o s s o ¢ o o o s o s o + o « 58
MODEL v 4« ¢ ¢ « o o o o o s o o o o o o o o « o « &« 59
NAME &« 4 o o o o o o s o o o o o o o6 s ¢ 0 ¢ « o o 60
OQUTPUTS & & ¢ 5 & o 2 o o o o o o o o o ¢« s o o o o« 61
12, PARAMETERIZE . &+ v ¢ ¢ v o o = o ¢ o o o ¢ o s o +» 62
SUBMODEL & 4 4 o o o o s o s o ¢ o ¢« o o ¢ o« « « « 64

oo~V WN P&
L

=
—= O
L] .

—
w
.

B. Modification Module . v ¢« & & o 4 ¢ o o o « o o o« o « o 67

. DELETE Statement . o« o « o o« o o ¢ o o« o« « o o » o 10
e END & 4 i ottt s e e e e e e s e e s e e e 12
e MODIFY & & 4 ¢« o o o o o o o o o o o o o o o « o » 13
o SUBSTITUTE « ¢ ¢ o o o o o o o o o s ¢ o o o o o « 14

WD

C. Simulation Module . . - . ® L] . . L] L4 . L] . L . * . * . 76

1. CI’IANGE Statement © e e & * e o e o s o & oie e e 80
2. END 6 o o o e s e e s & s 6 6 & & e & s e & o e o 86
3. ESTIMATE L e e I I N R BRI "o o o s . 87

[

TABLE OF CONTENTS (Continued)

4 EXCITE Statement . . . v v & + v « o 2 o « s o« « » 89
5. FUNCTION . & v v 4 4 v o v o o o v o o o o o v« 91
6. INITIALIZE . & & v v v v o o o o o o o o o o v o« 9
7. INTEGRATE . v v v v v v o o o o v o o o o o o « o o 97
8., PARAMETERS ¢ v v v v v v v v « o o o « « . 100
9, SIMULATE . . & v v & v v o o o v o o o e v v oo 101
10, STOP TF & v v v v v e v v o o v v e o e e e e o« v . 102
11, TERMINMATE IF . . & v 4 v v + v v v « o « v » « . . 103
12, VARY GAIN . & . v v v v v v e e e e e e e e e w104

D. Post Processing Module 106

END Statement 4 v + v ¢ v 4 ¢« o o « + + . . 108
FOURIER . & & v v v v 4 ¢« o o v ¢ o e o o v v o+ 109
5 7 1 o 5
PRINT . . . v v v v ot v e e o v v e e e v v v« . 119
SAMPLE ¢ v v v e e e e e e e e e e e ..ol 121

U W

III., SOFTWARE STRUCTURE OF MARSYAS ., . . . v v v v o v v v o o . 122
A, Introduction ¢ v 4 v v e v e W . . . 123
B, Overview . . . v v v v v v v 6 v 4 e e e e e e e . .. 123

C. Limitations of MARSYAS 125

1v. MATHEMATICAL STRUCTURE OF MARSYAS + . . 127
A. The State Space Approach . , ¢« « ¢« ¢« + « . . 128
B. Numerical Integration Techniques 128

Runga-Kutta Method . .,, 130
. Adams-Bashforth Method 130
Euler's Method v ¢ v ¢« v v v ¢« « « . 131
Butcher's Method « .+ 132
Sarafyan Variable Step Method 133

UMW N =

C. Solution Schemes for Differential Equations, . . 135

TABLE OF CONTENTS (Continued)

k]

V. OPERATION OF THE MARSYAS SYSTEM ., . . .,
A. Deck Setup for MARSYAS Operation on the-Univac 1108
Computer Under EXEC VIIE
B. MARSYAS Diagnostics v . . .« . .
VI. EXAMPLES OF THE USE OF MARSYAS« .« + + .
A, Mechanical Extension Device - Example A . .,
B. Do Nothing System with Submodels - Example B ., . .
C. Vehicle Stabilization System - Example C
TABLE OF STANDARD ELEMENTS v v ¢ v 4« o v ¢ o o o
TABLE OF STANDARD EXCITATION FUNCTIONS « . . .
REFERENCES . .uiieitenieennerersceseonseracsosnsnesonsnss tesesanas

Page

137

138

138

145

146

155

160

163

173

178

Figure

10
11
12
13
14

15

16
17

18

LIST OF FIGURES
Title
SIMULATION OF A MATHEMATICAL MODEL USING
MARSYAS &« & 4 4 ¢ ¢ ¢ o o o o o « o o o ¢ o o »

ILLUSTRATION OF MARSYAS CODING « .

BLOCK DIAGRAM APPROACH TO SOLVING A SECOND ORDER
PROBLEM USING MARSYAS . . . ¢ ¢ v ¢« v o« o o « o

EQUATION APPROACH TO SOLVING A SECOND ORDER
PROBLEM USING MARSYAS . « ¢ & ¢ v o o 6 o o o

STATEMENT OPERATORS USED IN DESCRIPTION MODULE
STATEMENT OPERATORS USED IN MODIFICATION MODULE
STATEMENT OPERATORS USED IN SIMULATION MODULE .

STATEMENT OPERATORS USED IN POST PROCESSING
MODULE ® o o e o e o e s e e e s e e e e o+ o @

AXIS DESIGNATION FOR VARIOUS PLOT MNEMONICS . .
EXAMPLE OF MULTIPLE GRIDS ON ONE FRAME
PLOT OF ONE VARIABLE AGAINST ANOTHER
PLOT OF VARIABLE AGAINST TIME . . . « « « + .« &

OVERVIEW OF MARSYAS SOFTWARE SYSTEM

OVERVIEW OF MATHEMATICAL PROCESS

MATHEMATICAL MODEL OF MECHANICAL EXTENSION
DEVICE '« ¢ v v v o o o o o o o o o o o o v .
1 .

BLOCK DIAGRAM OF MECHANICAL EXTENSION DEVICE .

BLOCK DIAGRAM OF DO NOTHING SYSTEM . « . . .«

VEHICLE STABILIZATION SYSTEM BLOCK DIAGRAM . .

.

.

Page

13

22
24

25
37
69

79

107
112
116
117
118
124

129

147
148
156

161

SECTION I

INTRODUCTION TO MARSYAS

I. INTRODUCTION TO MARSYAS

¥

A, General Description of MARSYAS

MARSYAS (Marshall System for Aerospace Simulation) was developed by
NASA's Computation Laboratory at Marshall Space Flight Center to furni;h
engineers with a software system that allows quick and easy simulation
of physical systems on a digital computer,

MARSYAS is a simple, flexible language which can be coded by users '
who are unfamiliar with computer programming. It is designed for the
engineer with little experience in simulation who desires to simulate
large physical systems. The language can be used to solve a system of
differential equations or to simulate control systems including analog
computer block diagrams or both simultaneously. Thus, the user has the
ability to mix differential equations with diaérams in his model. The
block diagrams can contain, among other things, adders, integrators,
transfer functions, multiple input/output nonlinear devices, algebraic
equations and nonlinear ordinary differential equations. A block dia-
gram is specified by the user-given names of its models and submodels,
inputs and outputs, element names, parameters (if any), and their inter-
connections. Submodels can be nested to any degree required. With
MARSYAS, no preset pattern of connecting elements is required, Elements
can be connected in pairg, groups or any manner desired by the user. A
large library of Standard Elements and Excitation Functions is part of
the MARSYAS system. DEVICE and FUNCTION statement operators allow the

user to construct unusual element or excitation functions as needed.

I A. GENERAL DESCRIPTION OF MARSYAS

MARSYAS is a flexiﬂle language in that, with few exceptions, there
is no rigid statement operator structure within a given module, Most
statements can be used without regard for the order in which they appear
within the modules. Depending upon the computer system in which MARSYAS
is installed, the user has the capability of storing models in a Func-
tional Data Base, The Fortran Object Pfogram generated from the MARSYAS
source program can be extracted and run separately, if the user's com-
puting facility can accommodate this feature, When using CHANGE opera-
tors, the user has multiple simulationjéapability without the necessity
of either rewriting his model or resubmitting his deck.

An elaborate plotting system is part of the MARSYAS language allow-
ing the user nearly unlimited flexibility in specifying his graphical
output. Additionally, the Fast Fourier Transform of any output variable
can easily be obtained. A tabular listing of a model in the Functional
Data Base or of a model currently being run can be obtained using the
LIST operator.

Automatic features of MARSYAS include the detection and solution
of linear and nonlinear algebraic 1oops._ For problems ﬁhich contain
discontinuities, the MARSYAS system aufomatically changes integration
schemes to integrate through the discontinuity, unless instructed other-

wise by the user.

MARSYAS is designed in modular form so that modifications to the
system models can be made with a minimum of effort., In order to achieve
comprehensive analysis capability and effective computation, modern con-

trol theory is used as the mathematical foundation of MARSYAS. The

I A. GENERAL DESCRIPTION OF MARSYAS

differential equations éenerated from block diagrams, or coded as equa-
tions, are rearranged internally into vector-matrix state equations
which are then solved.

The language is designed so that the user transmits to the computer
only the information essential to describe the mathematical model and
specify the simulation run.

MARSYAS is divided into four successive modules which describe inde-
pendent functions of the simulation. These modules are as follows:

Description Module
Modification Module (optional)
Simulation Module

Post Processing Module

The user has the ability to control some of the internal processing
of the simulation by specifying his numerical integration method, inte-
gration step size or even the truncation error. Normally, he need not
concern himself with these details since MARSYAS handles these details
automatically,

MARSYAS names can be up to 36 characters in length so that the same
names as found in engineering documentation can be used. The MARSYAS
alphabet consists of the letters A through Z, the numbers 0 through 9,

and the backward slash (\\). There are no reserved words in MARSYAS.

I B, THE MARSYAS PROGRAMMING SYSTEM

B. The MARSYAS Programming System

The MARSYAS programming system consists of two basic components:

1. A Source Program which consists of a set of MARSYAS statements

which may contain a—set.of FORTRAN subprograms,

2. A Processor Program which pre-compiles the MARSYAS language

into a set of FORTRAN programs called the Object Program.

The Source Program is fed to the computer on cards. The MARSYAS
coding format is "free form'" and information may be punched into any
card column, using as many cards as necessary to complete a statement,
Statement operators are always followed by a colon (:) and ended by a
dollar sign ($). A colon used without a statement operator repeats the
previous operator., Imbedded blanks in the coding are ignored. If FORTRAN
subprograms are used, the coding must adhere to the rules of FORTRAN,

The MARSYAS Processor Program converts the MARSYAS source language
into FORTRAN code. This FORTRAN code, also called the Object Program,
is then processed and executed by the computer operating system in the
éame manner as any other FORTRAN source -coding.

The MARSYAS processoF program is written in FORTRAN V and, at the
present time, can be implémented only on a Univac 1108 computer. Since
the processor is modular in design, it can be modified so that the full

system can be installed on other large computers.

10

I C,, MARSYAS PROGRAM CONTROL STATEMENTS

C. MARSYAS Program Control Statements

v

There are two program control statements necessary to control the
execution of the MARSYAS program., The BEGIN statement identifies the
MARSYAS system model being executed and the END statement marks the end
of the MARSYAS coding., The use of the BEGIN and END statements is illus~
trated in Figure 1. The names given to the system model must be identical
for the BEGIN and END statements, The general format for both is as
follows:

BEGIN: name $
MARSYAS Program

END: name $

The LIST operator is a third program control statement used to cre-
ate a tabular listing of a MARSYAS model currently being run or previously
stored in a Functional Data Base (if any).

The LIST statement will create a list of the following:

a) The model name, :

b) Model input and output terminals with alternate names, if any,
c¢) Element mnemonics, names and alternate names, if any,

d) Parameter names and associated values,

e) Connections between elements and system input-output terminals,
f) A list of submodels with their inputs and outputs,

The general format for the LIST operator is as follows:

i

LIST: model name $

The LIST statement may be placed anywhere after the BEGIN statement
and before the SIMULATE statement, even within a Description or Modifica-

~

tion Module,

11 -

I D, THE STRUCTURE OF THE MARSYAS LANGUAGE

D, The Structure of the MARSYAS Language

Usually, enginecers prefer to describe the system being simulated
using block diagrams since this form of "graphical" representation is
visually comprehensive. The blocks of the diagram can have multiple
inputs and multiple outputs and blocks imbedded within blocks. The low-
est level block is called an ELEMENT, the highest, a MODEL, A SUBMODEL

is a model imbedded within a MODEL.

A Description Module is used to describe the structure of a model
given in block diagram or equation form., It is headed by the operator
MODEL and terminated by an END$ statement. The ELEMENTS statement con-
tains the name of the élement, its mnemonic, and its parameters.

ELEMENTS are devices which may be linear or nonlinear. A linear
element can be as simple as a constant multiplier or as complex as a
transfer function. Nonlinear elements are representations of either
algebraic equations or switching functions or memory devices such as
hysterisis. TFrequently-used elements are listed in the Table of Standard
Elements at the back of the Manual. If an element needed is not found
in the Table of Standard Elements, a FORTRAN subroutine called a DEVICE
can be constructed to form the needed element. Parameters are con-
stants written in the format shown in the Table of Standard Elements
and are either numerical wvalues or-names. The numerical value of a named
parameter is given by the PARAMETERIZE Staﬁement. The CONNECT State~
ment connects strings of inputs and outputs of elements, submodels,

system inputs, or system outputs, to form the system block diagram. For

12

I D.- THE STRUCTURE OF THE MARSYAS LANGUAGE

COMPUTER
CONTROL CARDS

|

§/

X

{ BEGIN

y

FORTRAN DEVICE
OR FUNCTION
SUBPROGRAMS

;

DESCRIPTION
MODULE

l
Y

v

MODIFICATION
HODULE
(OPTIONAL)

!
V¥

SIMULATION
MODULE

@

/

POST PROCESSING
MODULE

END

FIGURE 1 SIRULATION OF A MATHERATICAL 1G0DEL USING IARSYAS
13 '

I D. THE STRUCTURE OF THE MARSYAS LANGUAGE

3

elemerits or submodels having a single input and output, only the name

of the element or submodel appears in the CONNECT Statement. The INPUTS
Statement designates names of the inputs of the model; the OUTPUTS State-
ment designates names of the outputs of the model.

The Modification Module allows inserting, deleting, and disconnecting

of elements and submodels previously described in the Description Module
through the use of the SUBSTITUTE, DELETE and DISCONNECT Statements,

The Simulation Module completes the specifications of the system

being analyzed. The INITIALIZE Sta;ement specifies the initial condi-
tions for the integrators and transfer functions, Excitation functions
applied at the system inputs are specified with EXCITE Statements. Fre-~
quently used excitation functions are listed in the Table of Standard
Excitation Functions at the back of the Manual. If an excitation func-
tion needed is not found in this Table, a FORTRAN subprogram called a
FUNCTION can be constructed to form the needed excitation. The INTEGRATE
Statement specifies the integration method to be used if a method other
than the standard method is desired. The STOP IF &and TERMINATE

IF Statements determine the condition(s) under which the simulation is
halted. A CHANGE Statement is used for performing repetitive simulations
without the need for dismantling the system model.

The Post Processing Module follows the Simulation Module and speci-

fies the format of data presentation to the MARSYAS processor. Both

tabular data and graphs are available for presenting the output data by

-

14

I D, THE STRUCTURE OF THE MARSYAS LANGUAGE

1

specifying the PRINT and PLOT statements, respectively. The printing
interval is specified in the SAMPLE Statement., A.frequency analysis can
be obtained at any output terminal through the use of the FOURIER State-
ment, See Section II for a more detailed description of each of the

Modules mentioned in this section.

E. How to Use MARSYAS - Basic Ideas

The complete simulation of a model under the MARSYAS system is com-
posed of several phases or modules as shown in Figure 1. The following
brief description of Figure 1 will enable the user to follow the con-
struction of the simple example shown on the following pages. A detailed
explanation of the modular structure of MARSYAS can be found in Section II,

The BEGIN statement identifies the user-given MARSYAS program
name (Example: BEGIN: TEST RUNLS).

The optional FORTRAN DEVICE and FUNCTION statement box, which ap-
pears at the top of Figure 1, is used for placing unusual excite and ele-
ment descriptions not found in the standard MARSYAS library. 1In general,
the user-coded FORTRAN DEVICE and FUNCTION ;ubprograms may appear any-
where within the MARSYAS program provided they appear before being
referenced in the MARSYAS coding. The safest approach, however, is to
place such subprograms ahead of the Description Module as shown to avoid
difficulty.

The Description Module is used to define the structure of the model.

There may be more than one Description Module in a MARSYAS program. It

15

I E., HOW TO USE MARSYAS - BASIC IDEAS

may be modified in a Modification Module, When using the block diagram
problem formulation, six distinct statement operators must be specified,
in any order with the exception of MODEL and END thch must be first and
last, respectively, as follows: MODEL name, INPUTS, OUTPUTS, ELEMENTS,
CONNECT statements and END, The MODEL name is user-defined and is ref-
erenced by the Simulation Module (Example: MODEL: MARSYAS ILLUSTRA-
TION MODELS). The INPUTS and OUTPUTS statements define all the model
inputs and outputs. If the model has one input and one output whose
userfassigned names are Ul and YL, respectively, the statements would
read as: |

INPUTS: UL$

OUTPUTS: Y1$

The ELEMENTS statement(s) specifies all of the elements contained
within the model, such as adders, integrators, transfer functions, ete,

A complete list of MARSYAS elements appears in the Table of Standard
Elements, along with their mnemonics., ¥For example, the mnemonic for an
integrator is IN and the mnemonic for an adder is AD. If the model con-

tains one adder and two integrators, the ELEMENTS statement would read:

ELEMENTS: AD, ADDERLS$: IN, INTEGRATORlL, INTEGRATOR2S

The CONNECT statement(s) connects the elements, inputs and outputs
of the model to form a complete circuit. Using the inputs, outputs, and

elements referred to above, the CONNECT statement could read:

CONNECT: Ul, INTEGRATORL, ADDERL, INTEGRATOR?, Y1$

16

IE. HOW TO USE MARSYAS — BASIC IDEAS

The CONNECT statement is easy to visualize in the following sche-

matic:
Ul .}f ./f Y1
—] P> e

INTEGRATOR! ADDERI INTEGRATOR?

For the simple model just shown, the complete Description module

is as follows:

MODEL: MARSYAS ILLUSTRATION MODEL$
INPUTS: UL$
OUTPUTS: Y1$

ELEMENTS: AD, ADDERI1S
: IN, INTEGRATOR1, INTEGRATOR2S

CONNECT: Ul, INTEGRATOR1, ADDER1, INTEGRATOR2, Y1$

END$

The END statement is the last statement to appear in the Description
Module. Every Module shown in Figure 1 must terminate with an END state-
ment.

The Simulation Module follows the Description Module. This module
begins with the SIMULATE stateﬁent. It references the mainbmodel name
being simulated as:

SIMUIATE: MARSYAS ILLUSTRATION MODEL$

17

I E. HOW TO USE MARSYAS - BASIC IDEAS

SIMULATE must be thé first and END the last statements in the Simu-
lation Module. The remaining statements described below may be located
anywhere within the Module, without regard to order. The Simulation
Module contains the following statements: EXCITE, INTEGRATE (optional),
TERMINATE IF or STOP IF, INITIALIZE, CHANGE (optional) and END,

The EXCITE statement is used to specify an excitation function on
a particular input., Usually, but not always, a Sfandard MARSYAS excita-
tion function is used., If an excitation function not listed in the Table
of Standard Excitation Functions is needed, the user may construct a
FORTRAN subprogram to do the job., This subprogram is called a FUNCTION
and is placed before the Description Module as previously discussed.

A typical EXCITE statement might read:
EXCITE: Ul, FSIN (2.0, 3.0, 4,0)$

where FSIN is the MARSYAS mnemonic for a sinusoid. The above EXCITE
statement says, "Excite input terminal Ul with 2 sin (3t + 4)."

The INTEGRATE statement specifies the mode of integration to be used
in solving the model, If the INTEGRATE statement is omitted, the problem
will be solved using the Sarafyan variable-step method., If fourth-order
Runga-Kutta is desired, the INTEGRATE statement could read:

INTEGRATE: RK, TIMESTEP, 0.01%
where RK is an abbreviation for Runga-Kutta and TIMESTEP, 0.0l specifies
the integration interval. 1If the word TIMESTEP is omitted, a step size

of 0,01 is used automatically.

18

‘ I E, HOW TO USE MARSYAS - BASIC IDEAS

It is usually necessary to terminate the problem solution when a
certain condition has been reached in one of the model parameters
or when a certain point in time is reached. If, for example, it is
desired to stop the solution after ten time units, one of the following
statements could be used:
TERMINATE IF: TIME .GT. 10.0$
or
STOP IF: TIME .GT. 10.0$
The INITIALIZE statement is used to impose initial conditions,
other than zero, on integrators and transfer functions. If, for example,
an initial condition of 3.2 were required on INTEGRATORL in the above

example, the statement would read
INITIALIZE: MARSYAS TLLUSTRATION MODEL, INTEGRATOR1 (3.2)$

When using the INITIALIZE statement, the model name as well as the
element name must be specified. If there are no initial conditions asso-
ciated with the problem, the INITIALIZE statement is omitted.

When it is necessary to make a succession of runs with different
parameter elements, a CHANGE statement may be used., CHANGE statements

are discussed in detail in Section II C.

t

19

I E, HOW TO USE MARSYAS - BASIC IDEAS

The END statement is the last statement to appear in the Simulation
Module., Summarizing the statements discussed above, the Simulation

Module for the simple example is as follows:

SIMULATE: MARSYAS ILLUSTRATION MODELS$

EXCITE: UL, FSIN (2.0, 3.0, 4.0)$

INTEGRATE: RK, TIMESTEP, 0,01$

TERMINATE IF: TIME .GT. 10,0$

INITIALIZE: MARSYAS ILLUSTRATION MODEL, INTEGRATORL (3.2)$

END$

The POST PROCESSING Module follows the Simulation Module and is used
to specify which outpﬁts to record, the time interval and the method of
presentation for viewing, that is, tables and/or graphs. In addition, a
frequency analysis can be specified at any output using the FOURIER state-
ment, The following statements are used in‘the POST PROCESSING Module:
PRINT, SAMPLE, PLOT, FOURIER, END. An example of the use of these state-

ments is as follows:

PRINT: U1, YL$'
SAMPLE: STEP, 10$
PLOT: LINEAR (0.0, 10.0, 1), Ul, Y1$

END$

20

I E. HOW TO USE MARSYAS - BASIC IDEAS

As a consequeﬁce of the above statements, the MARSYAS processor
will tabulate Time, Ul, Yl at every tenth integration step (STEP, 10)
and plot on separate sheets of linear graph paper (SC 4020 plotter) Ul
and Yl versus time in the time interval 0-10. As usual, the END state-
ment is the last to appear in the Module.

The very last statement to appear in the MARSYAS coding is a final

END name statement as:
END: TEST RUNLS

This is the counterpart of the BEGIN statement which is the first
statement to appear in the MARSYAS deck, Its pﬁrpose is to signal the
MARSYAS processor that there is no more MARSYAS coding.

Combining all of the above MARSYAS statements as shown in Figure 2
will emphasize the basic structure of the language and will enable the
user to follow the solution of the sample problem on the following pages.
A detailed description of all of the statement operators discussed in

this section will be found in Section II of the Manual.

21

POST

JE. HOW TO USE MARSYAS — BASIC IDEAS

BEGIN: TEST RUNIS

MODEL: MARSYAS ILLUSTRATION MODELS

OUTPUTS: Y1$

ELEMEMTS: AD, ADDERTS

ELEMENTS: IN, INTEGRATOR1?, INTEGRATCR2S

COHNECT: U1, INTEGRATOR], ADDEl;'{l, INTEGRATOR2, Y1$

SIMULATE: MARSYAS ILLUSTRATION MODELS

EXCITE: U1, FSIN (2.0, 3.0, 4.0}$

INTEGRATE: RK, TIMESTEP, 0.01$

TERMINATE IF: TIME .GT. 10.05

INITIALIZE: MARSYAS ILLUSTRATION MODEL, INTEGRATORT (3.2)$

PRINT: U1, Y1$
SAMPLE: STEP, 10$
PLOT: LINEAR (0.0, 10.0, 1), U1, Y1$

'&; -
= INPUTS: U1S
A
Qo
=g
z
o
}_:
a.
[+4
0
(V2]
|13
a
v ENDS$
A
341
=1
=)
[
o
=
=
o
}-
<
-
=
=
b ENDS$
V
A
v
Zw
vm') =4
31 g
8 o
& =
ENDS
Y

END: TEST RUNI$

FIGURE 2. ILLUSTRATION OF MARSYAS CODING

22

I F, A SAMPLE PROBLEM

F. A Sample Problem

Consider the simple mass-spring-dashpot system shown in the illus-

1

tration below, u

5;

S

The motion of the mass is described by the following differential

equation and initial conditions:

Mk +Bx +Kx= U (1)
x{0) = 20.0 and x(0) =0 2)
where M= 10.0, B= 2.5, K= 8,6, and U = sin t

There are two methods of solving this problem using MARSYAS:

(i) Equation (1) can be transformed into a block diagram whose elements
will consist of two integrators, an adder, and three constant multipliers
or, (ii) the equation can be coded directly as shown above, ~The two
methods of coding are illustrated in Figures 3 and 4.

The EQUATION option appears to be the more straight-forward method
of solution for this particular problem in that the Description Module
requires less coding, However, larger systems would probably be solved
using the block diagram approach since more inSight into the structure

of the problem is thereby gained.

23

POST

IF. A SAMPLE PROBLEM

+B <z
CM1 : IC = 20.0
-V
u X] X X
— T =
> va
> 13
= ADIOUT L xpoT
+K =<z
cM3
BEG!N: MARSYAS EXAMPLES$
K MODEL: MASS SPRING DAMPERS
[#1
- INPUTS: U$
a
Q | OUTPUTS:ADIOUT, XDOT, X$
5 ELEMENTS: IN, IN1, [N2§ : AD, AD1$: CM, CM1(2.5), CM2(0.10), CM3(8.6)$
&
§ CONNECT: AD1, ADIOUTS : U, AD1, CM2, IN1, IN2, CM3, —AD1$: INT, XDOT$
i : INT, CM1, —AD1$: IN2, X§
END$
. SIMULATE: MASS SPRING DAMPERS
wd .
2 EXCITE: U, FSIN (1.0, 1.0, 0.0)$
Q
= INTEGRATE: RK, TIMESTEP, 0.01$
(@]
= STOPIF: TIME .GT. 5.0%
L
= INITIALIZE: MASS SPRING DAMPER, 1N2(20.0)$
=
@ END$
2 T PRINT: X, XDOT, AD1OUT, US$
-t
§ B SAMPLE: STEP, 15
S 2
oz END$
D.

END: MARSYAS EXAMPLES

FIGURE 3, BLOCK DIAGRAM APPROACH TO SOLVING A SECOND
ORDER PROBLEM USING MARSYAS

24

POST
PROCESSING
MODUL

[

IF. A SAMPLE PROBLEM

BEGIN: MARSYAS EXAMPLES

MODEL: MASS SPRING DAMPER, EQUATIONS

5]

d

2 INPUTS: U$

<

=z OUTPUTS: ADIQUT, XDOT, X\OUT $

(o]

= EQUATION: 10.0* X** +2.5 * X' +8.6 * X = U$
= : ADTOUT = M * X"*$: XDOT = X'$
3 : X\OUT = X§

(L8]

2 1 Enp$

] SIMULATE: MASS SPRING DAMPERS

‘_J .

2 EXCITE: U, FSIN (1.0, 1.0, 0.0)$

(@]

i INTEGRATE: RK, TIMESTEP, 0.01%

O

5 STOPIF: TIME . GT. 5.0%

é INITIALIZ E: MASS SPRING DAMPER, X(20.0)$
v

ENDS

PRINT: X\OUT, XDOT, ADIOUT, U$
SAMPLE: STEP, 15

-
[l

END$

END: MARSYAS EXAMPLES

FIGURE 4. EQUATION APPROACH TO SOLVING A SECOND ORDER
PROBLEM USING MARSYAS

25

I F. A SAMPLE PROBLEM

.The program control statements BEGIN name and END name must appear
regardless of which method of coding is selected.- The name MARSYAS
EXAMPLE is selected to identify this MARSYAS simulation.

The following explanation of the coding which appears in Figures 3
and 4 should enable the user to become familiar with the MARSYAS language,
A complete description of each of the Moduies,gnd Statement operators

appears in Section II of this Manual,

Description Module

The name MASS SPRING DAMPER identifies the MODEi whose structure is
being deseribed in the statements to follow, If SUBMODELS were referenced
in this MODEL, then additional Description Modules would be required to
describe the structure of each submodel. WNotice that in Figure 4 the word
EQUATION follows the model name indicating that equations are to be used
in the MODEL. The excitation U is an input to the system and is so stated
in the INPUTS statement., Since we wish to observe the behavior of the
system being excited, the names X, XDOT and AD1OUT have beeﬁ specified as
outputs. Generally, outputs can be at any point in the system so long as
they are specified in the OUTPUTS statement,

When the problem is simulated in block diagram form, all of the
elements and connections, as well as the inputs and outputs, must be
specified in a Description Module as shown in Figure 3. The constants
B, M and K are constant multiplier elements with names CML, CM2 and CM3,
respectively, The numerical value of each constant multiplier appears

in parenthesis after its name in accordance with the format shown in

26

‘e

C

I F, A SAMPLE PROBLEM

>

the Table of Standard Elcments. The two integrators in the block diagram
are elements with names INL and IN2, so that the total number of elements
in the block diagram is six. All of the information concerning these
elements is contained within the ELEMENTS statement shown in Figure 3.
When elements are present, they must be connected together to form the
block diagram, This is done using a CONNECT statement, One important
rule that must not be violated when making connections is that redun-
dant connections are to be avoided. The same path must not be re-
traced, Since there is great flexibility in constructing CONNECT state-
ments, the user should always strive to keep it simple for "bookkeeping'
purposes, The first CONNECT statement in Figure 3 connects the output

of adder ADl to an output terminal AD1OUT. ©Note that the dollar sign ($)
terminates a string of connections., The next CONNECT statement (denoted
by the colon) traces the feed forward path and the lower feedback path,
_all in one statement, This is done strictly for the sake of convenience
and speed of writing. This connection could have been effected using
many separate CONNECT statements, if desired. The next CONNECT statement
connects the output of infegrator INl with output terminal XDOT, The
next statement traces the upper feedback path and the last statement con-
nects integrator IN2 with output terminal X. CONNECT statements are easy
to construct and should present no difficulty for the user. More informa-

tion on CONNECT statements can be found in Section II of this Manual.

27 .~

I F. A SAMPLE PROBLEM

When the problem is‘simulated in EQUATION form, ELEMENTS and CONNECT
statements are unnecessary. All that is required is the EQUATION oper-
ator as shown in Figure 4., Each equation is terminated by a ($) sign.
The colon repeats the EQUATION operator for each equation,

The END$ statement terminates the Description Module.

Simulation Module

The SIMULATE statement name MASS SPRING DAMPER references the model
being simulated. The name is the same as the main MObEL name given in
the Description Module, The excitation function, sin t, is impressed
upon the input terminal U using the EXCITE statement whose format is
given in the Table of Standard Excitation Functioms. The integration
method selected to solve this problem is Runga-Kutta with a step size of
0.01, This information is recorded in the INTEGRATE statement. The
STOP IF statement terminates the simul;tion after five time units, The
initial condition X(0) = 20,0 is specified in the INITIALIZE statement.
In Figure 3, the initial condition is placed on the integrator whereas
in Figure 4, X is initialized directly,

The END$ statement terminates the Simulation Module,

Post Processing Module

Since we wish to examine the system input and outputs, the PRINT
statement contains all of the names listed in the INPUTS and OUTPUTS

statement which are to be printed out, TIME will automatically be listed

28

I F, A SAMPLE PROBLEM

in tﬁe first column of each page of printout. The printing will occur
at each integration STEP as indicated in the SAMPLE statement, If the
SAMPLE statement is omitted, printing will occur at each integration
step.

The END$ statement terminates the Post Processing Module,

29

I 'G. MARSYAS MATH REFERENCE

G. MARSYAS MATH REFERENCE

When using the EQUATION option in the Description Module, mathe-
matical expressions may arise which allude to a quantity called a MATH
REFERENCE, The MARSYAS MATH REFERENCE library consists of the Standard
Elements, user-defined elements (DEVICES) and Standard Excitation Func-
tions. The form which these MATH REFERENCES take may be quite complex.
since they may consist of mathematical expressions, mathematical opera-
tions or other MATH REFERENCES.,

Suppose an equation contains a forcing function f£(x,y,t) which can
be represented by a Standard Excitation Function. The general form of
the Standard Excitation Functions, as shown in the Table of Standard

Excitation Functions at the back of the Manual is as follows:
excitation function mnemonic (parameters) $

For use in an EQUATION as a MATH REFERENCE, this form must be
altered slightly to include TIME or an equivalent expression for time
as S

excitation function mnemonic (parameters, A)S$

where A is either the word TIME or a mathematical expression from which
time can be computed. Usually, however, the user will simply insert the
wérd TIME in place of A, (See EXAMPLE (2) in EQUATION, Part IIL A,) The
user then associates each of the parametérs required by the Standard

Excitation Function with the variables in f(x,y,t) as shown in EXAMPLE (1).

30 -

I G, MARSYAS MATH REFERENCE
EXAMPLE (1)
Suppose an equation contains a forcing function 5X sin(2X2 + 3Yt).
Using the Table of Standard Excitation Functions ;t the back of the

Manual, the MATH REFERENCE is coded as follows:
FSIN(5. * X, 3. * Y, 2,0 * X ** 2 TIME)

where d; = 5, % X, dy = 3, ¥ Y, and dg = 2, % X ¥% 2,

Next, suppose that an EQUATION contains a term which is to be repre-
sented by a Standard Element. This situation might afise when using
EQUATION in conjunction with a block diagram, In this case, the MATH
REFERENCE is represented in much the same way as with the Standard
Excitation Function except that we mnow use Standard Elements in place
of Standard Excitation Functions. The gencral form of the Standard
Elements as shown in the Table of Standard Elements at the back of the

Manual is as follows:
element mnemonic (parameters)$

For use as a MATH REFERENCE, this form must be altered slightly
to include a mathematical expression(s) for each input of the element,
as well as an integer indicating to which element output terminal the

EQUATION applies, as

element mnemonic (parameters, Ml’ MQ, ceesy N)

where M; is a mathematical expression for each element input terminal

which may involve derivatives, other mathematical expressions or other

31

I G, MARSYAS MATH REFERENCE

)

MATH REFERENCES. N is the integer indicating to which output terminal
the EQUATION applies.

If the element has only one output, the integer N may be omitted.
The user assigns numerical values to the indicated parameters (if any)
as required in the usual use of Standard Elements. See EXAMPLE (2).

Note in EXAMPLE (2) that, since there are no parameters associated
with an integrator element and only one output, both the parameters and
the integer N are omitted from the parenthesis. Additionally, only one
mathematical expression is needed since the integrator has only one in-
put. Notice that either method of coding OUTPUTL is legitimate since

both are equivalent mathematically.

EXAMPLE (2)

Suppose a block diagram contains two integrators and one constant
multiplier as shown in the sketch below. Using the mnemonie for an
integrator, IN, as given in the Table of Standard Elements at the back
of the Manual, an equation for OUTPUTL using a MATH REFERENCE is coded

as shown below.

T QUTPUT

32

or

EQUATION:

EQUATION:

IG.

MARSYAS MATH REFERENCE

Z" = U -3.2%2z2"$)
OUTPUTL = IN(Z") $
OUTPUT1 = IN(U - 3.2 * Z') §

:33'

SECTION II

MODULAR STRUCTURE OF MARSYAS

34

II. MODULAR STRUCTURE OF MARSYAS

A, Description Module

The function of the Description Module is to provide the MARSYAS
processor with a description of the structure of the system being simp-
lated., The system might be a mathematical representation of a complete
Space Shuttle, its engines or any one of its subsystems., The mathematical
representation could be in the form of a block diagram, a series of block
diagrams, a set of differential equations or a mixture of block diagrams
and equations,

A Description Module is a MARSYAS representation of a complete or
partially complete mathematical system., A MARSYAS program may contain
several Description Modules, A model is completely described in a
Description Module. A submodel is a model wholly contained within another
model, 1If a model contains one or more submodels, then each submodel's
structure must be described in a separate Description Module.

When a model is represented in block diagram form, its structure is
specified by its INPUTS, OUTPUTS, ELEMENTS, SUBMODELS and cénnections.

An input is any point in a model where a driving function is applied and
an output is any point where the behavior of the model is to be examined,.
An element is any device whose input(s) and output(s) can be related by
algebraic or differential equations or based on logic. Each element
type, such as an adder or integrator, has a mnemonic, viz., AD and IN,
respectively, A library of Standard Elements is part of the MARSYAS
system and is given in the Table of Standard Elements at the back of

the Manual, A FORTRAN subprogram, called a DEVICE, can be constructed

35

'II A, DESCRIPTION MODULE

by the user to simulate any element not found in the Table of Standard
Elements. Some elements contain parameters which can be numerical con-
stants or named constants, If the parameter constants are named, their
values are specified with PARAMETERIZE statements. The interconnections
among the system inputs, elements, submodels and outputs are specified
with CONNECT statements, Connéct statements can be modified without
altering the original coding by using DISCONNECT statements. Alternate
names for models, elements, inputs, outputs or parameters can be assigned
using the NAME statement. There are no reserved names (words) within the
MARSYAS system,

When a model is represented by a collection of differential equations,
the statement operators ELEMENTS, PARAMETERIZE, SUBMODEL, CONNECT,
DISCONNECT and NAME are not used, The EQUATION operator is used when
specifying equations. Equations may contain mathematical expressions
ﬁhich consist of MARSYAS names, mathematical operators, numerical con-

stants and MATH REFERENCES. MATH REFERENCES are discussed in Section I G,

The order in which the above statements appear within a model
description is immaterial except that MODEL and END must be the first
and last statements, respectively. A detailed description of all of the
statement operators used in the Description Module appears in alphabeti-
cal order on the following pages. Figure 5 is .a list of these operators

with a brief description of their function,

II A. DESCRIPTION MODULE

OPERATOR . FUNCTION
CONNECT Specifies the interconnection of ele-

ments, input and output terminals and
submodels within the model,

DEVICE Defines a non-standard element.

DISCONNECT Cancels connections specified by a
previous CONNECT statement.

ELEMENTS Specifies the mnemonic, names and
parameters of elements in a model,.

END - Marks the end of a Description Module.

EQUATION Specifies a model in terms of
equations,

INPUTS Assigns names to the model input
terminals,

MODEL Marks the appearance of a Description
Module and names the model,
NAME Assigns alternate names to units already
defined.
OUTPUTS Assigns names to the model output terminals.
PARAMETERIZE Assigns a numerical value to a parameter

which was given a name instead of a num-

ber in an ELEMENTS statement., Also used

to change the value of a parameter as-

signed a numerical value by an ELEMENTS
! or PARAMETERIZE statement,

SUBMODEL Assigns a name to a submodel and its
associated inputs and outputs,

% Allows comments for the user.

FIGURE 5. STATEMENT OPERATORS USED IN THE DESCRIPTION MODULE

37

IT A, DESCRIPTION MODULE

COMMENT

FORMAT -
%* message or blanks $
COMMENTARY -
The comment statement may appear anywhere in any module and may
extend over as many source cards as are necessary. The source cards

are printed exactly as read without the editing common to all other

MARSYAS statements, The asterisk can appear in any card column.

EXAMPLE

* This is a comment card $

IT A, DESCRIPTION MODULE
CONNECT

FORMAT -

CONNECT: namel, name2, name3, etc. $

COMMENTARY -

The CONNECT statement is used to describe the signal paths émong
the elements, submodels and input and output termi?als of the system.
The direction of the signal flow is implied by the order in which the
arguments of the connection statement are given., CONNECT statements
must always begin as follows: .

1. at an element output

or
2. at a system input terminal

CONNECT statements'mpst always end as follows:

1. at an element input
or
2. at a system output terminal

Since a system input terminal is used to apply a signal, it must
i

be the first to occur in the CONNECT statement of which it is a part.

Similarly, since a system output name can only receive a signal, it can

only appear as the last name in a string of CONNECT statements. Redun-

dant connection paths are not allowed.

39

IT A, DESCRIPTION MODULE

CONNECT (Cont'd.)

If a signal path goes through a.submodel,.it is only necessary to
specify the connections to and from the submodel. It is not necessary
to repeat the connections within the submodel which have previously been
described in that submodel's Description Module.

Every signal path which occurs within the model must be described
by a CONNECT statement, If a signal path branches, then the new path
is started at the point of branching, The CONNECT statement is not used

with the EQUATION statement.

EXAMPLE

INPUTT o=tz IN] bt ADT b QUTPUT?2

The CONNECT statement for the ébove simple circuit is as follows:

CONNECT: INPUT1, IN1, AD1, OUTPUT2S

FXAMPLE

Consider the following simple circuit:

jNEU}g-b ~=> OUTPUT7

40

II A. DESCRIPTION MODULE

L]

CONNECT (Cont'd.)

The CONNECT statement reads as follows:

CONNECT: INPUT5, A, B, C, D, OUTPUT7S$

B, E, -A$

There are several permissible variations of this CONNECT statement

such as

CONNECT: INPUTS5, A, B, E, -A

: B, C, D, OUTPUL7$

The intermediate dollar sign(s) may be omitted when using the colon
to repeat a statement operator as above.

Note that the CONNECT statement allows the use of a negative sign
on element inputs only. For example, -INPUT5 would not be permitted in
the above CONNECT statements.

When elements with multiple inputs and outputs are connected, the
element terminal numbers must be carefully noted when writing the CONNECT

statement,

41

IT A, DESCRIPTION MODULE

CONNECT (Cont'd.)

EXAMPLE
Consider the following connections of system INPUT5, Al and Bl
with ELEMENTS, ML1 and IN4 and the connection of the output of element

MLl with the system output, Cl.

Bl IN4 =

ML 1 s

Al =i 2

The CONNECT statement could be coded as follows:

14#ML1, MLI#1

CONNECT: B1, IN4, C1$

| 3

- =

.,

Al, 2#ML1$

The two terms in the dotted box may be combined into one for ease
of writing. Thus 1#ML1#1 is equivalent to writing I#ML1, ML1#1.
~ The above connect statement reads as follows: 'Connect input Bl
to element IN4 and element IN4 to input #1 of element MLL and connect
output #1 of element MLl to output Cl, Connect input Al to iint #2 of
element ML1." Note that the second CONNECT stétement, CONNECT: Al, 2{ML1S,

does not connect past input #2 of ML1l, thus avoiding a redundant connection.

42 -

e - A v T wem v At w4

cpe— -

IT. A, DESCRIPTION MODULE

CONNECT (Cont'd,)

Should the user desire, he can give names to the terminals of an
element using a NAME statement, then CONNECT using element names instead

of terminal numbers (see NAME).

EXAMPLE

Suppose that we wish to assign the names INPUT1, INPUT2, and OUTPUT
to the three terminals of MLl in the previous example. The coding for

the NAME and CONNECT statements is as follows:

NAME: 1#ML1, INPUT1$: 2#ML1, INPUT2$: ML1#1, OUTPUTS
CONNECT: B1, IN4, INPUT1, OUTPUT, C1$

: Al, INPUT2S

When elements with multiple inputs and a single output or a single
input and multiple outputs are connected, additional simplification of

the coding is possible as shown in the EXAMPLE below.

43 - -

IT A, DESCRIPTION MODULE

CONNECT (Cont'd,)

EXAMPLE

The three elements with names A, B and C are connected as shown

in the sketch below,

IN] =————ti 1 1 b=t QU T
IN2 eyt 2 A 1 3> B R e I | Cc 2 b3 OUT2
IN3 =3 3 > OUT3

The CONNECT statement can be coded as follows:

CONNECT: INl, 1#A#1, B, 1l#C#l, OUTL $
+ IN2, 2#fA S : IN3, 3#A S

: C#2, OUT2 § : C#3, OUI3 $
The firsthONNECT statement can also be written as follows:
CONNECT: 1INL, 1#A, B, C#l, OUTL $

This shortened form of the CONNECT statement is possible since A

has a single output, B has a single input and output and C has a single

input,

44

G e ew et e e ek

II A, DESCRIPTION MODULE
DEVICE

FORMAT -
DEVICE: a FORTRAN name, number of element input terminals,
number of element output terminals, number of element

parameters$

COMMENTARY -

The DEVICE statement is used to create a new Element, coded in
FORTRAN, which is treated as though it were a Standard Element. This
is done by specifying the mnemonic, as identified by the FORTRAN name,
and referenced in a MARSYAS ELEMENTS statement, and the number of inputs,
outputs and parameters the new element is to have. A FORTRAN subroutine
must immediately follow the DEVICE statement and is used to add to the

MARSYAS library a temporary program capable of calculating the output of

- the new element from its input values, A DIMENSION statement is required

in the subroutine even if there are no arrays needed within the subrou-

v

tine,
The subroutine name referenced in the FORTRAN SUBROUTINE statement

is the same FORTRAN name referenced in the DEVICE statement. This is the

element mnemonic assigned in the appropriate Description Module ELEMENTS

- statement. A maximum of four arguments in parenthesis may follow the sub-

routine name, These arguments are arbitrary real FORTRAN array names for

the element inputs, outputs, parameters and time, in that order. If time

is not needed in the subprogram, it may be omitted from the argument list,

45

IT A, DESCRIPTION MODULE

DEVICE (Cont'd.)

If time is used, however, its value must not be altered or otherwise
manipulated within the subprogram. Since the element inputs, outputs
and parameters are treated as arrays within the FORTRAN subprogram, a
DIMENSION statement dimensioning the arfays must appear within the sub-
routine, Real variable array names must be given to the dimensioned
arguments., The element name referenced in the MARSYAS ELEMENTS state-
ment is a MARSYAS name and, hence, is ﬁot restricted to six characters

as are FORTRAN names,

EXAMPLE (1)

The user decides to construct an element with MARSYAS name ALPHAONE
for use in Description Module model DELTA, The element, having a FORTRAN
mnemonic name ALPHA, has three inputs, two outputs and eight parameters.
The arbitrary real array names for the element inputs, outputs, parameters

and time are A, B, C, and D, respectively., The coding is as follows:

'DEVICE: ALPHA, 3, 2, 8 $

§ SUBROUTINE ALPHA (A, B, C, D)

DIMENSION A(3), B(2), C(8)

ORTRAN

coding

T

" RETURN
END

F

MODEL: DELTA

— o

ELEMENTS: ALPHA, ALPHAOME (1,1, -3.0, 0.0, 6.2,
8.0, 2.1, 3.4, -7.6) $ °

| o -

46

MARSYAS
coding

IT A, DESCRIPTION MODULE

DEVICE (Cont'd.)

EXAMPLE (2)
Shown below is the FORTRAN coding for a relay device which is
available in the Standard Elements library of MARSYAS, Following it is

the MARSYAS coding referencing this device,

YA
YBREAKT

X oo

=Y

F)

Q X
XBREAK

DEVICE: RELAY, 1, 1, 2$
T SUBROUTINE RELAY (X, Y, Z)

DIMENSION X(1), Y(1), Z(2)
YBREAK = Z(1)

E o0 XBREAK = Z(2)

£ IF (ABS X(1) .LT. XBREAK) Y(1) = 0.0

S 3 IF (X(1) .GE, XBRFAK) Y(1) = YBREAK
IF (X(1) .LE. -XBREAK) Y(1) = -YBREAK
RETURN
END

MODEL: TIMS
INPUTS: . . . §
OUTPUTS: . . . $

ELEMENTS: RELAY, RELAYL (YBREAK, XBREAK) $
CONNECT: ., . . § -

PARI;METERIZE: RELAYl, (YBREAK, 2.0, XBREAK, 1,0)$
END '

.

Note that the FORTRAN name for the DEVICE and for the input, output
and parameter array names must be real variable names.

47"

IT A. DESCRIPTION MODULE

DEVICE (Cont'd.)

Should the need arise, the DEVICE statement can be constructed in
a general manner by substituting the letter N for any or all of the num-
ber of element inputs, outputs and parameters,' Then the value(s) of N
is specified in the ELEMENTS statement as shown in EXAMPLE (3) below,

following by the appropriate element parameters.

EXAMPLE (3)
If in EXAMPLE (2) the number of element inputs, outputs and param-

eters are to be varied, the coding would appear as follows:

DEVICE: ALPHA, N, N, N $
SUBROUTINE ALPHA (A, B, C, D)
DIMENSION A(3), B(2), C(8)
RETURN

END

MODEL: PSY$

ELEMENTS: ALPHA, ALPHAL(2, 1, 4, 3.2, 1.1, 6.4, 9.3)$
ENDS)

MODEL: BETAS
ELEMENTS: ALPHA, ALPHAIS(L, 2, 3, 0.0, 2.4, 6.,1)$

ENDS

48

II A. DESCRIPTION MODULE

DEVICE (Cont'd.)

Note in EXAMPLE (3) that the fir;t three arguments in the element
parameter string identify the values of N to be inserted in the device
statement. The first value of N being the number of element input
terminals, the second value of N being the number of element output
terminals and the third value of N beiné the number of element parameters.
The remaining numbers in parenthesis are the actual values of the ele-
ment parameters.

It is permissible to place DEVICE. statements, and associated sube
routines anywhere within the MARSYAS program after the BEGIN statement
and before the Simulation Module provided they appear prior to their
first reference in an ELEMENTS statement. Tt is recommended, however,
that all DEVICE statements be placed at the very beginning of the MARSYAS
deck, after the BEGIN statement. This serves the purpose of isolating

the source FORTRAN code from the MARSYAS language statements.

49

II A. DESCRIPTION MODULE
DISCONNECT
FORMAT -

DISCONNECT: namel, name2, etc. $

COMMENTARY ~

The DISCONNECT statement is used to cancel already defined signal
paths among the elements, submodels and input and output terminals. The
statement is written in exactly the same manner as for the CONNECT state-
ment., The DISCONNECT must appear after a CONNECT statement which estab-
lished the connection which DISCONNECT is now to break. The DISCONNECT

statement is not used with BQUATION,
EXAMPLE
If a CONNECT statement is given as
CONNECT : }A, B, C, DS
a DISCONNECT statement might bg
DISCONNECT: B, C $
The above two statements are now equivalent to the following statements:

CONNECT: A, B $

CONNECT: C, D $

50

II A. DESCRIPTION MODULE
ELEMENTS

FORMAT -

ELEMENTS: mnemonic, name (parameters, if required) $

COMMENTARY -

MARSYAS provides the user with a larger number of operational
devices called ELEMENIS, similar to those available on an analog computer,
but far more numerous and versatile. These elements include items such
as adders, integrators, multipliers, transfer functions, etc. A Table of
Standard MARSYAS ELEMENTS appears at the back of the Manual. The Table
lists the elements according to type or class, gives the element block
diagram symbol, the number of inputs and outputs, the element mnemonic,
the input-output relation and the appropriate parameters, if any. The
user is not restricted to the "standard" set., Non-standard elements may
be defined by the user through the use of the DEVICE statement. These
new elements are treated in exactly the same manner as the original set
furnished by the system. The ELEMENTS state&ent is not used when the

EQUATION statement is used,
EXAMPLE

ELEMENTS: AD, ADDERl, ADDER2, ADDER3 $

ELEMENTS: CM, CML(1.0), CM2(-3.6) $

51 - .

IT A, DESCRIPTION MODULE

ELEMENTS (Cont'd.)

The constant multiplier (CM) elements above specify the parameter
constants 1.0 and -3.6. If the user desires, dummy variables may be sub-

stituted for these values and later specified in PARAMETERIZE statements.

An example of using parameter constants in an ELEMENTS statement

is as follows:

ELEMENTS: CM, CMl(A), CM2(B) $

PARAMETERIZE: CML (A, 1.0)

<>

i CM2 (B, -3.6)

<>

See CONNECT for additional comments on elements.

52

IT A. DESCRIPTION MODULE

FORMAT -

END$S
COMMENTARY -
The END statement is used to close a DESCRIPTION MODULE. The

END statement must be the last statement in a DESCRIPTION MODULE,

EXAMPLE

ENDS$

53

IT A. DESCRIPTION MODULE

UATION

FORMAT -

EQUATION: Differential or algebraic equation $

COMMENTARY -

The EQUATION statement operator is designed to provide the user
with great flexibility in specifying his model., The model can be
described in terms of a system of differential and algebraic equations
with almost no restrictions on their structure. The one main restriction
is that a '"'solution scheme' of the set of equations must exist, This is
discussed in detail in Section IV C; of the Manual,

The ordinary differential equations which MARSYAS solves may be
linear or nonlinear and of any degree. Since fhe independent variable
is always time in the MARSYAS system, all differentiation is assumed to
be with respect to TIME., Direct differentiation of the variable name
TIME or of system INPUT or OUTPUT names is not permitted, The output vari-
bles may be differentiated.by assigninglto them alternate names. An
apostrophe is used to indicate differentiation with respect to time.

Thus dzx/dt2 would be represented as X".

There are no restrictions on the form of the mathematical expressions
contained within the equ;tions, except that the expression itself must not
be differentiated, Expressions may emplov any of the standard arithmetic
operations of addition (+), subtraction (or minus éign) (-), multiplica-~
tion (*), division (/) and exponentiation (¥%), .Balanced parenthésés may

be used where needed. See EXAMPLE (1).

54

-

II A, DESCRIPTION MODULE

i}

EQUATION (Cont'd.,)

Mathematical expressions may consist of MARSYAS names, mathematical
operators, numerical constants and MATH REFERENCES. The use of the
MATH REFERENCE adds an additional dimension to the use of the EQUATION
option in that the user is permitted to take shortcuts when constructing
equations, especially when the equations are used in conjunction with
block diagrams. See MATH REFERENCE, Section I G.

The block diagram and equation méaes may be mixed when the system
main MODEL, described in block diagram form, contains SUBMODELS, some or
all of which contain equations. The structure of each submodel is, of
course, described as a separate MODEL.

When a MODEL contains an EQUATION statement, the statement operators
ELEMENTS, PARAMETERIZE, SUBMODEL, CONﬁECT, DISCONNECT and NAMﬁ are not

necessary and, therefore, not used. The MODEL statement must contain the

word EQUATION to alert the MARSYAS processor that equations are used in

the MODEL (see MODEL).

Many times, the EQUATION statement is used, in conjunction with the
INPUTS and OUTPUTS statements, to build é model of a system., When used
in this manner,lthe EQUATION operator presents a mathematical relation

.which determines the value of the systeﬁ outputs from the value of the
inputs and TIME. These relations may involve an arbitrary number of
intermediate variables,

An example of using MARSYAS in this manner is illustrated in Fig-

ure 4, Section I F. Note that each equation in Figure 4 is preceded by

55

ITI A. DESCRIPTION MODULE

»

EQUATION (Cont'd,)

the EQUATION statement (or its colon equivalent) and followed by the
dollar sign (8) terminator,

The number of INPUTS and OUTPUTS names for a MODEL is arbitrary.
There need not be any INPUTS, but there must be at least one output
terminal when using EQUATION, Thus, the INPUTS statement may be omitted
but the OUTPUTS statement must appear.

Initial conditions on the equations are coded in the Simulation
Module as noted in the INITIALIZE statement in Section II C. of this

Manual,

EXAMPLE (1)

Code the following homogeneous differential equation using the

EQUATION operator,

2
x4 dx 4 o = 0.0
de2 dt \

EQUATION: X" + X' + C¥X = 0.0$

56

.II A, DESCRIPTION MODULE

. EQUATION (Cont'd.)

EXAMPLE (2)

Code the following non-homogeneous differential equation using the

EQUATION operator and the MATH REFERENCE.

2
Sl_.iz{. + gx + cx = 5 sin 2 t
dt dt
EQUATION: X" + X' +C*X = FSIN (5,0, 2,0, 0.0, TIME) $

An example of using the EQUATION operator with a MARSYAS transfer
function element converted to a MATH REFERENCE is shown in EXAMPLE (3)

of INITIALIZE in Section II C,

57

I1 A, DESCRIPTION MODULE

)

INPUTS

FORMAT -

INPUTS: namel, name2, etc. $

COMMENTARY -

The INPUTS statement is used to give identifying names to the
points in the model (input terminals) at which driving functions are
to be introduced. The INPUTS statement is optional if driving func-

tions are not needed in the model,.

EXAMPLE

INPUTS: INL, IN2, IN3$
or
INPUTS: IML$

: IN2, IN3$

]

58 .

IT A, DESCRIPTION MODULE

MODEL

FORMAT -

MODEL: name$ or MODEL : name, EQUATION $

COMMENTARY -

The MODEL statement is used to give an identifying name to the
model’ or submodel being described. Within a Description Module, all
model names must be unique, MODEL must be the first statement of a
Description Module and END the last., The name referenced is the user-

specified model name.

EXAMPLE

MODEL: SATURNS SIMULATORS
MODEL: X-LOOP GYRO$

MODEL: ALPHAS$

If the EQUATION option is chosen, then the MODEL statement in-

cludes the word EQUATION as shown in the example below.

EXAMPLE

MODEL: DELTA, EQUATIONS

59

 II A, DESCRIPTION MODULE
gégg
FORMAT -~
NAME: original name, new name $
COMMENTARY -~

The NAME statement is used to assign an additional MARSYAS
name to an element, parameter, system input terminal, or system output
terminal which is defined elsewhere through an ELEMENIS, PARAMETERIZE,
INPUTS, or OQUTPUTS statement, respectively. In addition, it may be used
to assign a new name to a particular terminal of an element or its asso-
ciated parameters. The NAME statement is not used in connection with the

EQUATION statement.
EXAMPLE

NAME: BILL, WILLIAMS

This NAME statement assigns the new name WILLIAM to BILL. The
name BILL is not erased from the MARSYAS program and the names WILLIAM
and BILL may be freely interchanged.

The NAME statement can also be used to assign names to the
inéut(s) and output(s) of elements, See CONNECT for an example,

It is illegal to attempt to change a name previously defined by

a NAME statement with a new NAME statement.

IT A, DESCRIPTION MODULE
QUTPUTS
FORMAT -~
OUTPUTS: namel, name2, etc. $
COMMENTARY -~

The OUTPUTS statement is used to give identifying names to the
points in the model (output terminals) at which the system is to be

examined. There must be at least one oﬁtput terminal in the main model.
EXAMPLLE
OUTPUTS: OUT1, OUT2, OUT3$

or

OUTPULS: OUTL$

: OUT2, OUT3$

61

- IT A, DESCRIPTION MODULE

PARAMETERIZE

FORMAT -~
PARAMETERIZE: element name (parameter number or name, numerical
’ value)$
or
PARAMETERIZE: parameter name (numerical value)$
COMMENTARY -

The PARAMETERIZE statement ié used to give numerical values to
specific MARSYAS parameters or to change parameter values previously
assigned, Parameters afe identified through the names given in ELEMENTS
and NAME statements. The PARAMETERIZE statement is not used with

EQUATION.
EXAMPLE
Suppose the following is referenced in an ELEMENTS statement
ELEMENTS: TF, TF1(2, 2.0, 1.0, PHY, 1.8, 8.5, BETA)S

Then the PARAMETERIZE statement might read

PARAMETERIZE: TF1 (PHY, 6.0)$: TF1l (BETA, -1.0E-2)$

or

PARAMETERIZE: PHY (6.0)$: BETA (-1.0E-2)$

II A. DESCRIPTION MODULE

)

PARAMETERIZE (Cont'd.)

The PARAMETERIZE statement can be used to alter the value of a
parameter ﬁreviously specified in an ELEMENTS statement, The user may
wish to use this method to effect a parameter change rather than recode
the original ELEMENTS statement, since it requires less work. If an ele-
ment contains several parameters, the PARAMETERIZE statement effecting a
change in parameters can be shortened by specifying the position of the
parameter within the parentheses, along with its revised value. See

CHANGE in Section II C.

EXAMPLE

For the ELEMENTS statement shown below, change the value of the

fifth parameter from 1.8 to 15.2.
ELEMENTS: TF, TF6(2, 1.3, 2.1, 7.4, 1.8, 3.4, 9.7) §

PARAMETERIZE: TF6(5, 15.2)$

i

The ELEMENTS then appears to the system as if it had been origi-

nally coded as

ELEMENTS: TF, TF6(2, 1.3, 2.1, 7.4, 15.2, 3.4, 9.7) §

63

IT A. DESCRIPTION MODULE

SUBMODEL
FORMAT -
SUBMODEL: name ; INPUTS: a, b, ¢, d, etc; OUTPUTS: h, i, j, k, etc$
COMMENTARY -

A submodel is a model wholl& contained within another model., The
SUBMODEL statement is needed to give idgntifying names‘to the submodel and
its input and output terminals. These terminal names will be used to
CONNECT the submodel to the main model. Submodels can be imbedded within
submodels, The structure of each submodel must be described in a _Description

Moduie separate from the one in which it is imbedded,

EXAMPLE
MODEL: GAMMA$
Al B1
INPUT1 - o o—1, Sui’:i?{DEL . loo > OUTPUTI
6 o 2 OUTPUT2
B2
INPUT2 2 INTEGRATOR —— QUTPUT3

64

could be coded as follows:

IL A,

DESCRIPTION MODULE

SUBMODEL (Cont'd.)

The model GAMMA contains one submodel and an integrator. It

° .

o

MODEL: GAMMAS
INPUTS: INPUT1, INPUT2$
'§ OUTPUTS: OUTPUT1, OUTPUT2, OUTPUT3$
o
2 ELEMENTS: INTEGRATORS
% ‘ '
30 SUBMODEL: PHY; INPUTS:Al; OUTPUTS: Bl, B2$
2, L -
Faty CONNECT: INPUTL, Al$
(9]
172]
A : Bl, OUTPUT1$
B2, OUTPUT2$: INPUT2, INTEGRATOR, OUTPUT3$
END$
? o MODEL PHY_$——]
L s |
E INPUTS: Al1$
= by OUTPUTS: B1, B2$
g [0]
o8 ELEMENTS: _ _ _$
Rk Describes the configurations of PHY
3 CONNECT: _ _ _$
8
ENDS

65

II A, DESCRIPTION MODULE

SUBMODEL (Cont'd.)

NOTE: 1In describing the submodel, the input and output terminal
names of the submodel need not be the same as those defined in the main
model. However, there must be a one-to-one correspondence between the
number and order of the terminals specified in both models' INPUTS and

OUTPUTS statements.

MARSYAS names used within a particular MODEL must be unique.
However, names which are used in a submodel can be repeated in the main

MODEL,

66

II B, MODIFICATION MODULE

)

B. Modification Module

The Modification Module is used to alter an élready existing model
by adding or deleting elements, input or output terminals, and submodels
and/or by changing the interconnections among these items. A MARSYAS
program may contain several Modification Modules,

Figure 6 is a list of statements which can appear in the Modification
Module with brief comments as to their function. A detailed explanation
of a few of those statements, not preViously discussed, is given in the
following pages. Explanations of the remaining statements appear in the
Description Module portion of this Manual, The order in which the state-
ments appear is immaterial except that MODIFY must be first and END last.
DISCONNECT, DELETE and SUBSTITUTE can be used to alter the Description
Module statements which defined the ofiginal connection (CONNECT) which is
now to be broken or the original element (ELEMENTS) which is now to be
deleted or substituted. DEVICE may appear at any point in the program pro-
vided it is used before the first appearance of the new element type in an
ELEMENTS statement. The INPUIS and OQUIPUTS statements are used to define
additional input and outp;t terminals, respectively., The SUBMODEL, ELEMENTS
and DEVICE statements are used to add additional submodels, elements and
non-standard elements, respectively, Ail additional terminals, if any, must
be connected witgin the Modification Module. The PARAMETERIZE and NAME
statements have the same functions. as described within the Description

Module. When the EQUATION option is used in the Description Module, there

67

IT B. MODIFICATION MODULE

can be no Modification ﬁodule since no ELEMENTS, element names, CONNECTs
or parameters will exist there.

If the system contains several Description and Modification Modules,
the only requirement for ordering the Modules within a MARSYAS program
is that the Modification Module must follow the Description Module it
modifies, For example, a MARSYAS program might contain a group of three

Description Modules followed by a group of three Modification Modules,

68

IT B.

OPERATOR
CONNECT

DELETE

DEVICE
DISCONNECT
ELEMENTS
END

INPUTS
MODIFY
NAME
OUTPUTS

PARAMETERIZE

SUBMODEL \

SUBSTITUTE

MODIFICATION MODULE

FUNCTION
Same functions as in Description Module.
Deletes an already specified element or
input or output terminal, and removes
all connections to or from that element
or terminal,
Defines a non-standard element,
Same functions as in Description Module.
Adds additional elements to the model,

Marks the end of a Modification Module.

Adds additional input terminals to the
model,

Marks the appearance of a modification
module and can give a new name to the
modified model.

Same functions as in Description Module,

Adds additional output terminals to the
model.

Assigns or changes numerical values of
parameters of elements present in
either a Description or Modification
model.

Adds additional submodels to the model.
Substitutes one element for a previously
defined element, The number of inputs
and outputs must be the same for both

elements,

Same functions as in Description Module.

FIGURE 6, STATEMENT OPERATORS USED IN THE MODIFICATION MODULE

69

IT B, MODIFICATION MODULE
DELETE
FORMAT -

DELETE: namel, name2, name3, etc,$

COMMENTARY -~

The DELETE statement removes an element, input terminal or
output terminal from the model being modified. All connections asso-
ciated with the deleted items are broken. The user must reconnect
(using CONNECT statements), the elements and terminals which are
affected by the DELETE statement,

EXAMPLE
If the unmodified model ELEMENTS statement is
ELEMENTS: AD, AD1, AD2, AD3$
and a Modification Module DELETE statement is

DELETE: AD2$

then the effect is that the original model would look as if it had

been coded as

ELEMENTS: AD, ADl, AD3$

70

II B. MODIFICATION MODULE

)

DELETE (Cont'd.)

The user must reconnect the deleted connections associated with

the deleted element, AD2,

71 -

II B. MODIFICATION MODULE

FORMAT -

COMMENTARY -
The END statement is used to close a Modification Module.

END statement must be the last one in a Modification Module,

EXAMPLE

END$

72 .

The

II B, MODIFICATION MODULE
MODIFY

FORMAT -

MODIFY: model name, new model name (optional)$

COMMENTARY -

The MODIFY statement is used to identify the model which is to be
modified and optionally to give the modified model a new name. If a
new name is not given, the modified model has the same name as the ori-
ginal model. MODIFY must be the first statement of the Modification

Module,

EXAMPLE

MODIFY: ALPHAS

MODIFY: ALPHA, BETAS$

The first statement identifies the model which is to be modified.
The second statement may be used in place of the first if the user de-
sires to retain the original model, ALPHA, and create a new model BETA

which will be a modified version of ALPHA,

73

IT B. MODIFICATION MODULE

*

SUBSTITUTE
FORMAT -

SUBSTITUTE: original element name, replacement element name$

COMMENTARY ~

The SUBSTITUTE statement is used to effect the complete replace-
ment of one element by another element, The elements do not have to be
of the same type as long as each element has the same number of input
and output terminals. For example, a power function could be substituted
for an integrator since both have one input and one output, All connec-
tions to and from the original element are replaced by the connections

to and from the substitute element,

EXAMPLE

If the original model contained the following statements,

ELEMENTS : CM, CML$
: AD, AD1, AD2$
CONNECT : ADL, CML, AD2S

and the Modification Module contained the statements,

SUBSTITUTE: CMl, IN1$

ELEMENTS: IN, INLS

74

IT B, MODIFICATION MODULE

SUBSTITUTE (Cont'd.)

then the effect is that the original model would look as if it had been

coded as

ELEMENTS: AD, AD1, AD2$: IN, INLS

CONNECT: AD1, INL, AD2S

Note: It is up to the user to determine whether a particular sub-

stitution is physically meaningful,

75

! II C, SIMULATION MODULE

C. Simulation Module

The Simulation Module completes the description of the system whose
structure is defined in a Description Module(s). A MARSYAS program can
contain only one Simulation Module, In this Module, the user specifies
the INPUT excitation function(s), the numerical integration scheme to be
used in the problem solution and any required initial conditions. The
conditions for stopping the simulation are also specified in the Simula-
tion Module.

A sequential series of simulations can be run without resubmitting
the MARSYAS deck by using CHANGE statements, These permit the user to
alter one or more of the following statements without altering the origi-
nal coding: EXCITE, INITIALIZE, STOP IF, TERMINATE IF and PARAMETERS.

Excitation functions are impressed upon the model input terminals
using EXCITE statements, A Table of Standard Excitation functions is
‘part of the MARSYAS system and is shown at the back of this Manual.
Additional excitation functions may be defined by the user through FUNC-
TION statements,

Initial conditions (other than zero) on integrators or transfer
functions are specified with the INITIALIZE statement,

There are currently five methods of numerical integration available
in the MARSYAS system, Euler's 1St-order, Butcher's 5th-order, Sarafyan
5th.order variable-step, &4tP-order Runga-Kutta and Adams~Bashforth
predictor-corrector. These integration methods are discussed in Section
IV B, The MARSYAS system automatically selects the Sarafyan variable-

step method unless instructed otherwise by an INTEGRATE statement, If

76

IT C, SIMUIATION MODULE

the user chooses the Adgms-Bashforth method, the MARSYAS system auto-
matically selects a relative error of‘0.002 unless otherwise specified,
In addition, Runga-Kutta and Butcher's methods will be run using a step
size of 0,01 unless otherwise specified.

Conditions for temporarily or permanently halting the simulation
are given by the STOP IF and TERMINATE IF statements, respectively.
STOP IF is used to halt each simulation when using CHANGE statements.

Constant gain elements (Constant Multipliers) can be changed into

time-varying multipliers through the use of the VARY GAIN statement,

If the user has described his system in block-diagram form in the
Description Module, linear and/or nonlinear '"loops' may be present. The
absence of an integrator or transfer function in a closed path produces
a loop. A loop is nonlinear if it contains at least one nonlinear ele-
ment (such as a power function), Otherwise it is linear. In the MARSYAS
system, loops are automatically solved .using either a Newton-Raphson or
a successive approximation technique and the elements within these loops
are automatically listed for the user by the MARSYAS processor. The
ESTIMATE statement can be used to assign‘initial values to the outputs
of nonlinear elements within a nonlinear loop(s) should the user desire
to do so, otherwise a value of zero is assumed.

A summary of the statements which appear in the Simulation Module
is shown in Figure 7 along with brief comments as to their function.

Details of these statement operators are given in the following pages.

77,

II C. STIMULATION MODULE

The order in which the statements appear in the MARSYAS deck is imma-
terial except that SIMULATE must be the first statement of the Simula-
tion Module and END the last., FUNCTION does not have to appear within
the Simulation Module, but must appear before it is referenced in an
EXCITE statement. It is recommended that all FUNCTION statements be
placed at the very beginning of the MARSYAS deck, after any DEVICE

statements or just following the BEGIN statement.,

78

II C. SIMULATION MODULE

Y

OPERATOR FUNCTION

CHANGE Creates additional simulation runs with
changes in the model.

END Marks the end of the Simulation Module.

ESTIMATE Specifies initial values for the outputs
of nonlinear elements within a nonlinear
loop.

EXCITE Specifies the excitation functions to

be applied to the input terminals.

FUNCTION Defines a non-standard excitation func-
tion.
INITIALIZE Specifies initial conditions for inte-

grators or transfer function elements.

INTEGRATE Specifies the integration method to be
used,

PARAMETERS Specifies new parameters for a Descrip-
tion Module element,

SIMULATE Marks the appearance of the Simulation
Module.

STOP IF Specifies the condition or conditions

TERMINATE IF for stopping a simulation either tempo-
rarily (STOP) or permanently (TERMINATE),

\
VARY GAIN ! Defines time varying coefficients.
* Provides a comment for the user,

FIGURE 7, STATEMENT OPERATORS USED IN THE SIMULATION MODULE

-

79

IT C. SIMULATION MODULE

CHANGE

4

FORMAT -
CHANGE: name of change; Statement operator : Statement format $
Note: For each change statement, a separate simulation is
performed, '
COMMENTARY -

The CHANGE statement is used when répetitive simulations are de-
sired, For example, the user may wish to observe the behavior of his
model when certain parameters, excitation(s), initial conditions or
stopping conditions have been changed, A series of simulations can be
set up in one run, thus saving valuable user and computer time., When
using CHANGE, the user specifies an identifying name for the new simula-
tion, the statement operator being changed and the statement format.
The statement operators used with the CHANGE statement are PARAMETERS,
EXCITE, INITIALIZE, STOP IF and TERMINATE IF,

When changing Description Module ELEMENT parameters, the user must
specify the name of the MODEL,in which the element occurs, the element

name, the position number of the parameter in the parameter string and

changed parameter values.

80

IT1 €., SIMULATION MODULE

»

CHANGE (Cont'd,)

v

EXAMPLE

The following ELEMENTS statement appears in the Description

Module model PSY

ELEMENTS: TF, TF6(2, 1.3, 2.1, 7.4, 1.8, 3.4, 9.7)$

and the user desires to change the fifth value in the parameter string

to 15.2., The CHANGE statement would be coded as follows:
CHANGE: NEW TF6; PARAMETERS: PSY, TF6(5, 15.2) $

This causes the original ELEMENTS statement to be processed as

if it had originally been coded as
ELEMENTS: TF, TF6(2, 1.3, 2.1, 7.4, 15.2, 3.4, 9.7)$

If one of the parameters in an ELEMENTS statement is a MARSYAS
name rather than a real number, the same technique as described above
can be used to change its value, Consider the same ELEMENTS statement
as shown in the above example except that the fifth element which we

want to change has the name BILL as shown below:

ELEMENTS: TF, TF6(2, 1.3, 2.1, 7.4, BILL, 1.8, 3.4, 9.7)$

81 .

II C. SIMULATION MODULE

»

CHANGE (Cont'd.)

Changing the value of BILL to 15.2 can be accomplished in the following

manney:
CHANGE: NEW TF6; PARAMETERS: PSY, TF6(5, 15.2)$

Since the name BILL is unique within the MODEL where it is used,
the CHANGE statement can be shortened somewhat to take advantage of this
fact by referencing the parameter name rather than the element name, The

previous CHANGE statement could then be written as follows:
CHANGE: NEW TF6; PARAMETERS: PSY, BILL(15.2)$

If several parameters of one element are to be altered using one
CHANGE statement, the position numbers and new parameter values are

listed in pairs, in any sequence, as shown below,

EXAMPLE

The following time varying coefficient element appears in the

Description Module model TIM
ELEMENTS: TV, TV1i(3, 0.0, 0.0, 4.2, 1.6, 5.4, -3.2)$

and the user desires to change the last four parameters to the follow-

ing values: 5.1, 1.93, 6.2, 1.,1. The MARSYAS coding is as follows:

CHANGE: RUN3; PARAMETFRS: TIM, TV1(4, 5.1, 5, 1.93, 6, 5.4, 7, 1.1)$

82

IT €., SIMULATION MODULE

’

CHANGE (Cont'd.)

An alternate method of coding the previous statement is as follows:
CHANGE: RUN3; PARAMETERS: TIM, TV1(4,5.1)(5,1.93)(6,5.4)(7,1.1)$

If an element contains only one parameter, the position number of
the parameter is orne, The coding for changing the value of a constant

multiplier is shown in the example below.

EXAMPLE

If the constant multiplier element with name CML and parameter
value 3.0»exists in the Description Module model ALPHA and the user
desires to change the multiplier parameter value to 6.4, then the Simu-
lation Module CHANGE statement with néw simulation name NEW CM2 would

read
CHANGE: NEW CM2; PARAMETERS: ALPHA, CM2 (1, 6.4)$

If the user desires to change the Simulation Module EXCITE,
INITIALIZE, STOP IF and TERMINATE IF statements, the form of the state-
ment (s) is exactly as described elsewhere in this section of the Manual
except that each statement is preceded by the word CHANGE and the title

of the change,

83

ITI C. SIMULATION MODULE

]

CHANGE (Cont'd.)

EXAMPLE

CHANGE: name of change; EXCITE : input terminal name, new

excitation function mnemonic$

CHANGE: name of change; INITIALIZE : model name, element name

(new initial conditions)$
CHANGE: name of change; STOP IF : new logical expression$
CHANGE: name of change; TERMIMNATE IF : new logical expression$

Except for STOP IF and TERMINATE IF, CHANGE statement altera-
tions are permanent unless changed again in subsequent simulations.
STOP IF statement changes are temporary and are valid only for the simu-

lation specified by the given CHANGE statement.

If there are 'n" CHANGE statements in the Simulation Module,
there will be "n+1" simulations executed by the MARSYAS processor. The
additional simulation being that of the system as originally configured,
as if no CHANGE statements were present. If the user desires to omit the
original simulation and have the MARSYAS processor proceed to the simu-
lation as specified by the first CHANGE statement, he must insert the

following statement anywhere in the Simulation Module,

CHANGE: (DELEIE) $

84

11 C., SIMULATION MODULE

CHANGE (Cont'd.)

The simulations will then proceed, one by one, until all of the
CHANGE statements have been executed or until a TERMINATE IF statement
appears. |

When a TERMINATE IF statement is executéd, the MARSYAS program is
halted and no further CHANGE statements are executed, This is not the case
with the STOP IF statement. For example, after changing one or more ele-
ment parameters, initial conditions or excitation functions, the user may
decide to examine the system outputs after a short period of simulation
time, then proceed to the next CHANGE statement. The STOP IF statement is

used for this purpose,

EXAMPLE

Let us assume that the user decides to change one of the system
EXCITE functions toa ramp and also to change. the simulation time. The

CHANGE statement could be coded as follows:
CHANGE: RUN ONE ; EXCITE : INPUT6, FRAMP (-2.0); STOP IF : TIME ,GT. 10.0$%
? Note ~ Semicolon
When there is more than one change speéified in a particular

CHANGE statement, each is separated by a semicolon as shown in the example

above,

. 85

11 C. SIMULATION MODULE

FORMAT -

ENDS
COMMENTARY -
The END statement is used to close the Simulation Module, The END

statement must be the last one in the Simulation Module.

EXAMPLE

END$

86

II C, SIMULATION MODULE

ESTINATE
FORMAT -
ESTIMATE: model name, element name (output(s) estimate)$
COMMENTARY -

The ESTIMATE statement is used to assign initial values to the
outputs of non-linear elements which are part of the non-linear loop.
When using the ESTIMATE statement, the user specifies the initial esti-
mate of the output of a non-linear element which is part of a non-linear
loop. The use of ESTIMATE is similar to that of INITIALIZE which speci-
fies the initial conditions on integrators or transfer functions. The
use of ESTIMATE is optional and is intended for use as an aid, if needed,

in solving imbedded non-linear loops.

EXAMPLE

If a non-linear loop in model ALPHA contains a power function
element whose name is PFl, and whose user specified estimate at time zero

is 1.0, then the ESTIMATE statément would be

ESTIMATE: ALPHA, PF1l (1.0)$

87.

II C., SIMULATION MODULE

ESTIMATE (Cont'd.)

Should a non-linear element contain two outputs, such as an out-

put relay (with name ROl), then the ESTIMATE statement would be

ESTIMATE: ALPHA, RO1 (1.5, 3.2)$

88.

IT C. SIMULATION MODULE
EXCITE

FORMAT -~

EXCITE: system input name, excitation function mnemonic (parameters)S$

COMMENTARY -

The EXCITE statement is used to specify an excitation function at
each input terminal., The user must specify the excitation mnemonic and
the parameters associated with the given excitation. A Table of Standard
MARSYAS EXCITE statements appears at the back of this Manual. The Table
lists the excitation function mnemonics and parameters, the type of ex-
citation, the mathematical description of the excitation function, and
a graph of the function versus time. The user is not restricted to the
"standard" set. Non-standard excitations may be defined by the user
through the use of the FUNCTION statement (see FUNCTION), When coding,
non-standard excitations are treated in exactly the same manner as the

standard MARSYAS set.

EXAMPLE
EXCITE: INPUT1, FSIN (5,0, 2.0, 0.0)$

This statement causes the MARSYAS processor to excite terminal

INPUTL with the function 5 sin 2¢t.,

89 ...

II C. SIMULATION MODULE

EXCITE (Cont'd.)

The same excitation function can be used to excite several dif-

ferent inputs as shown in the example below.

EXAMPLE

The system contains inputs IN1, IN2, IN3 which are to be excited
with a step function of magnitude 3.2, The coding required to effect this

is as follows:

EXCITE: INl, IN2, IN3, FSTEP(3.2)$
or
EXCITE: INl, FSTEP(3.2)$: IN2, FSTEP(3.2)$

IN3, FSTEP(3.2)$

Y]

90 -

II C. SIMULATION MODULE

FUNCTION
FORMAT -

FUNCTION: a FORTRAN name, number of parameters$

COMMENTARY -

The FUNCTION statement is used by the programmer to create a new
excitation function, coded in FORTRAN, which is treated as though it
were a MARSYAS Standard Excitation Function. This is done by specifying
the new mnemonic as identified by the FORTRAN name, and the number of
mathematical parameters required to compute the excitation function. A
FORTRAN FUNCTION subprogram must immediately follow the MARSYAS FUNCTION
statement as formatted above. The user-created FORTRAN FUNCTION subpro-
gram then computes the output of the new excitation function from the
parameter values specified in the EXCITE statement. (See EXCITE.)

The subprogram name referenced in fhe FORTRAN FUNCTION statement
is the same FORTRAN name referenced in the MARSYAS FUNCTION statement.
This is the excitation function mnemonic assigned in the Simulation Module
EXCITE statement. The arguments in.pafenthesis which follow the FORTRAN
FUNCTION name are arbitrary real FORTRAN names for the parameters re-
quired to compute the excitation function in the subprogram. The last argu-;
ment in thé_parameter list must be a symbol for time. - The value of time

must not be altered or otherwise manipulated within the subprogram. The

91 -

IT C. SIMULATION MODULE

FUNCTION (Cont'd.)

excitation name referenced in the MARSYAS EXCITE statement is a MARSYAS
name and, hence, is not restricted to six characters as are FORTRAN
names. |

It is permissible to place the FUNCTION statement(s) and associated
subroutine (s) anywhere within the MARSYAS program after the BEGIN state-
ment and before the Post Processing Module provided they appear prior to
being referenced in EXCITE statements. It is recommended, however, that
all FUNCTION statements be placed at the beginning of the deck, after or
shortly following, the BEGIN statement to isolate the source FORTRAN

code from the MARSYAS language statements.

EXAMPLE
Shown below is the FORTRAN coding for the truncated ramp excitation
function shown, Following it is the MARSYAS coding referencing this

FUNCTION,

TIME

92

II C. SIMULATION MODULE

FUNCTION: RAMP, 3 $

FORTRAN
Coding

. FUNCTION (Cont'd.)

FUNCTION RAMP (A, B, T)

IF ((T .GE. 0.0) .AND. (T .LT. B)) X = /B * T

iF (T .GE. B) X = 0.0

RAMP = X

RETURN

END

SIMULATE: EPOCHS

EXCITE: 1INPUT6, RAMP

END$

93

(2.0, 2.0)$

11 C. SIMULATION MODULE
. INITIALIZE

FORMAT -

INITIALIZE: model name, element name (initial conditions)$

COMMENTARY -

The INITIALIZE statement is uéed to assign initial conditions to
the integrators and transfer functions defined in the MARSYAS program.
When using the block-diagram approach, the user must specify the name
of the model in which the integrator or transfer function appears along
with its element name and initial conditions. If specifying the initial
conditions of an ntP-order transfer function, n-initial conditions must
be specified in the ascending order of the derivatives as shown in
EXAMPLE (1). If the INITIALIZE statement is omitted, all initial condi-
tions are defaulted to zero, aﬁtomatically.

When using the EQUATION mode of solution as defined in the Descrip-
tion Module, the initial conditions are specified by stating the model
name followed by each derivative and its initial condition. If one of
the derivatives is omitted, then its iniﬁial condition is automatically
defaulted to zero., See EXAMPLE (2).

When using é model which has a MATH REFERENCE transfer function,
the initial condition on the transfer function is specified as shown in

EXAMPLE (3).

9%. -

II C. SIMULATION MODULE

INITIALIZE (Cont'd,)

EXAMPLE (1)
If model ALPHA contains an integrator with name INL,. initial condition

of 3.6, and second order transfer function with name TF6, where TF6 is

s) = _—s*1 yith y() = 1.2 and y' (0) = 4.4
u(s) 52 + 2s +1

then the initial conditions on each are specified as follows:
INITIALIZE: ALPHA, INL (3.6)S$

: ALPHA, TF6 (1.2, 4.4)$

EXAMPLE (2)
Suppose in model BETA, which uses EQUATION, the variable X as well
as the derivatives X', X, X", and X' appear. Then the non-zero ini-

tial conditions would be expressed as follows:
INITIALIZE: BETA, X"' (1.6), X" (2.2)$

The initial condition on X' would automatically be set to zero

since it has been omitted from the INITIALIZE statement.

95

W

II C. SIMULATION MODULE

INITIALIZE (Cont'd.)

EXAMPLE (3)

Suppose we wish to code the following expression in EQUATION form

in a Description Module model whose name is PHY.

Y(s) = 1
X(s) s +1

Using the MARSYAS Transfer Function element as a MATH REFERENCE,

the above could be written in EQUATION form as follows:

MODEL: PHY, EQUATIONS
Y = TF (1,0, 1,1, 1, X)$

END$

Then, in the Simulation Module, the INITIALIZE statement would read

INITIALIZE: PHY, Y (1.6)$

9% -

.CZ’

1T C, SIMULATION MODULE

INTEGRATE
f oS e oo Bt o]
FORMAT -
INTEGRATE: mnemonic, code word, real number $
COMMENTARY -

The INTEGRATE statement (optional) is used to specify the integra-
tion algorithm to be used in the problem solution, Five methods of inte-
gration are presently available in the:MARSYAS system, Euler's (18t-order),
Butcher's (5th-order), Sarafyan (5th-order) variable-step, Runga-Kutta
(4th-order) and Adams-Bashforth predictor~corrector. Other numerical
integration methods soon will be added to the MARSYAS language allowing
the user greater flexibility in solving his problem. Only one INTEGRATE
statement can appear in a MARSYAS deck, When choosing the method of inte-
gration desired, the user specifies its.mnemonic, the code word TIMESTEP,
and integration step size. The mnemonics for each of the integration
methods currently available are as follows: Euler's (EU), Butcher's (BU),
Sarafyan (SA), Runga-Kutta (RK), Adams-Bashforth (AB). The timestep may
be specified only for Euler, Butcher and Runga-Kutta methods. If the
timestep is omitted, the simulations will be performed with an integra-
tion step size of 0,01,

If the user omits the INTEGRATE statement, the simulation will be
run using the Sarafyan method. If ‘the user chooses the Adams~Basﬁ£orth

method, the MARSYAS system automatically selects a relative error of 0,002,

97 . .

II C, SIMULATION MODULE

INTEGRATE (Continuedl

An absolute error or other relative error may be éelected if the code
word ABSERR or RELERR, respectively, is used in an INTEGRATE statement,
followed by the user specified error, |

If the simulation problem contains a Sample and Hold element(s),
Butcher's method or the Runga-Kutta method of integration should be used,

with the TIMESTEP smaller than the smallest Sample and Hold interval,

EXAMPLES
a) INTEGRATE: RK, TIMESTEP, 0,01$
b) INTEGRATE: AB, RELERR, 0.05$
¢) INTEGRATE: AB, ABSERR, 0.001$
d) INTEGRATE: BU, TIMESTEP, 0.01$

e) INTEGRATE: EU, TIMESTEP, 0,01$

Euler's method is implemented automatically whenever the MARSYAS
processor detects the presence of a discontinuity. Thus, if a disconti-
nuity occurs at time, tl’ the integration method will change to the
Euler method at time t,-€ and back to the method of integration used before
the discontinuity was encountered, at time t1+€. The reason for the
Euler-interrupt is that the lower order method gives better results at
discontinuities than the higher order methods, See Section IV B,

To disable the Euler~interrupt at discontinuities so that the chosen

integration scheme continues without interruption, simply insert the

98 -

II C. SIMULATION MODULE

3

INTEGRATE (Continuedg

word XEULER after the timestep or error value in the INTEGRATE statement

as follows:

INTEGRATE: RK, TIMESTEP, 0,001, XEULERS

II ¢, SIMULATION MODULE
PARAMETERS
FORMAT -~

PARAMETERS: model name, element name (parameter number, numerical
value)$
or

PARAMETERS: model name, parameter name (numerical value)$

COMMENTARY -

The PARAMETERS statement is used to assign numerical values to
Description Module element parameters in much the same way as the
Description Module PARAMETERIZE statement (Section II A.,). The only
difference between ﬁhe two operators is that the model name must be
specified in the PARAMETERS statement, whereas it is not required in the
PARAMETERIZE statement.

The user might choose to use this operator when altering parameters
in several different Description Modules thus eliminating the need for

changing his original coding.

EXAMPLE

PARAMETERS: PSY, cML (1, 2.2)$

See PARAMETERIZE and CHANGE for additional comments and examples.

100

ITI C. SIMULATION MODULE
SIMUILATE
FORMAT -

SIMUIATE: System model name$

COMMENTARY -

The SIMULATE statement is used to identify the system being
simulated. The system model name is the main model name specified in
the Description Module. Since there is only one system model, any
other models appearing in the Description Module describe the structure of
submodels appearing in-the main system model,

SIMUIATE must be the first and END the last statement of this

module,

EXAMPLE

SIMULATE: SPACE SHUTTLE ENGINES

101.

II C. SIMULATION MODULE

]

STOP_IF
FORMAT -

STOP IF: 1logical expression $

COMMENTARY -

The STOP IF statement specifies the condition(s) for temporarily
halting a simulation. When more than one simulation is to be executed
(via CHANGE statements), a halt caused by STOP IF allows the execution
of the next simulation to proceed. This is contrasted with a halt
caused by TERMINATE IF which permanently stops the simulation and pre-
vents the execution of any additional simulations. There is no differ-
ence between STOP IF and TERMINATE IF if no CHANGE statements are present,.
The construction of the logical expression part of the STOP IF statement
is described under TERMINATE IF., There may be as many STOP IF statements
as the user may require to control the éimulgtion.

é
EXAMPLE
STOP IF: TIME .GT. 20.0$%
STOP IF: (OUTPUT6 .LE, OUTPUT3)S$

STOP IF: (INPUT1 .AND. INPUT2) .GE. 60.0$

102.

IT1 C, SIMULATION MODULE

v

TERMINATE IF

FORMAT -

TERMINATE IF: 1logical expression $

COMMENTARY -

The TERMINATE IF statement specifies the condition(s) for perma-
nently halting a simulation. The hal#ing conditions are expressed
using standard FORTRAN logical expressions. The logical operators AND,
OR, NOT and relational operators EQ, NE, GT, GE, LE and LT are used to
form logical expressions involving TIME, and/or model INPUT or OUTPUT
names., A halt caused by TERMINATE IF halts the simulation being exe-
cuted and no additional simulations will be processed even though
CHANGE statements may be present, (See STOP IF.) There may be as many
TERMINATE IF statements as the user may requir? to control the simula-

tions,

EXAMPLE
TERMINATE IF: TIME .GT. 5.0%
TERMINATE IF: (OUTPUTL .OR. OUTPUT2) .GT. 3.2%

TERMINATE IF: (INPUTl .AND, INPUT2) .EQ. 60.0$

Testing on equality as shown above should be avoided because the

equality may never be exactly satisfied.

103

"II C, SIMULATION MODULE

VARY GAIN
i o e
FORMAT -
VARY GAIN: model name, constant multiplier algebral? expression 3
element name or numerical list
COMMENTARY ~

The VARY GAIN statement is used to change Constant Multiplier elements
into Time Varying multipliers, This feature permits the user to solve
different equations with time varying coefficients or solve models which
contain time varying multipliers, Recall that Constant Multiplier (CM)
elements are assigned names in a DESCRIPTION Module using an ELEMENIS state-
ment, These CM element names along with the model name of the DESCRIPTION

Module in which they appear are used in the VARY GAIN statement above,

EXAMPLE

Suppose in model BETA, with Constant Multiplier element names
MULT1(36,3), MULT2(0,05) and MULT3(-3.4), the user desires to change
MULT2 to 3t2 + 5.2 cos t. Then the VARY GAIN statement would be expressed

as follows:

VARY GAIN: BETA, MULT2('3.0 * TIME *% 2 + 5.2 * COS(TIME)')$

Note the quote marks which must enclose the entire expression.

104

II C. SIMULATION MODULE

VARY GAIN (Continued)

Should the time~varying nature of the function be expressed as a
linear piecewise continuous curve, then the coordinates of the curve at

the discontinuities are sufficient to define the function as shown below

Y:f(f) (f2, Yz) (f4lY4)

(f]'y]) (73 :)'3)

TIME

which is represented by the numerical list
(0, £1,¥15 tys¥os oves £ YD

where the first number in the list, n, is an integer specifying the num-
ber points defining the function (<100 points), and the numbers following
n are the coordinates of the points, WNote that the numerical list is

not enclosed by quote marks,

EXAMPLE

In the previous example, let MULT2 be a piecewise continuous func-
tion similar to the plot above, Then the VARY GAIN statement would read

VARY GAIN: BETA, MULT2 (4, 0.0, 1.0, 1.2, 2,2, 2.8, 1.0, 4.3, 2.4)$

105 -

IT D, POST PROCESSING MODULE

D. Post Processing Module

The function of the Post Processing Module, which always follows
the Simulation Module, is to specify the output format for the MARSYAS
processor. In addition, the Post Processing Module contains a Fast
Fourier Transform (FFT) processorvwhich is explained later in this sec-
tion. A MARSYAS program can contain only one Post Processing Module,

The following is a brief description of the terminology which the
user will encounter in reading this section of the Manual,

The PRINT statement is used to specify which output variables are
to be printed while the SAMPLE statement indicates the print interval.
If all or part of the output is to be plotted, a PLOT statement is re-
quired, Should the frequency response at any output terminal be desired,
the FOURIER statement is used.

A summary list of the statement operators used in this section
appears in Figure 8 along with brief comments as to their function. The
order in which the statements appear within the Post Processing Module
is immaterial except that END must be the last statement,

A more detailed description of these operators as well as examples

as to their use appears in alphabeticél order on the following pages.

i

106 . -

"II D. POST PROCESSING MODULE

)

OPERATOR FUNCTION
END Marks the end of the Post Processing
Module.
FOURIER Calculates the frequency response
of the system inputs or outputs
specified.
PLOT Defines the variables to be plotted

and the way they are to be plotted.

PRINT Specifies the variables to be printed.

SAMPLE Defines the sampling rate at which the
variables are printed.

% ' Provides comment for the user.

FIGURE 8. STATEMENT OPERATORS USED IN THE POST PROCESSING MODULE

107 -

II D. POST-PROCESSING MODULE

FORMAT -

ENDS$

COMMENTARY -

This should be the last statement in the post-processing module.

108" x

II-D, POST-PROCESSING MODULE
FOURIER

FORMAT - N

FOURIER: name 1 (period length), name 2 (period length), etc. $

COMMENTARY -

The FOURIER statement provides the user with a frequency response
of the system inputs or outputs specified. The frequency response con-
sists of a Fourier Transform magnitude:énd phase spectrum and power
spectral density (PSD). The waveform period length must be specified
by the user and is indicated by a real number in parcnthesis after the
input or output terminal name. A maximum of 2048 samples are available
for use in obtaining the frequency response of each terminal, Since
Runga-Kutta is the only integration scheme permitted when using FOURIER,
the user must coordinate his integratioﬁ step size with the period length
to take advantage of the maximum number of sample points which the MARSYAS
processor is capable of handling., 1In addition to tabulation data output,
the user is provided with linear plots of PSD, magnitude and phase angle

versus frequency.

EXAMPLE

The user has decided to obtain the frequency spectrum of his sys-
tem at output LAMBDA, After having examined the time response at LAMBDA,
he decides fhat a period length of i6.0 seconds is required to define

his waveform, In order to utilize all 2048 permissible sample points,

109

%

IT'D., POST-PROCESSING MODULE

FOURIER (Cont'd.)

the user computes his Runga-Rutta step size to be

16,0 S8eomds . 5q.g Doints 4 6578195 seconds/sample point.
period period

This is the integration TIMESTEP which must be used as part of the
INTEGRATE statement in the Simulation Module. The FOURIER statement is

coded as follows:

FOURIER: LAMBDA (16.0)$

It is not necessary for the user to use all 2048 sample points in
order to obtain the frequency response, However, the use of the maxi-
mum number of points (2048) will always give more accurate results than

when using fewer points.

'110-

II D. POST-PROCESSING MODULE

PLOT

FORMAT -
rid-type :
PLOT: inemon?g (TIMEL, TIME2,CODE), N(XL,Yl, X2,¥2, X3,Y3)$
COMMENTARY -

The PLOT statement is used to obtain automatically scaled plots
of the INPUTS and/or OUTPUTS of the system being simulated. The grid
type is specified by the mnemonics LINEAR, SEMILG, LOGLOG and LOGSEM.
Figure 9 summarizes the functions of the grid type mnemonics., TIMEL
and TIME2 are the plot start and stop reference times, CODE is an inte-
ger, 1 or 2, indicating the nature of the independent variable(s) being

plotted. 1If CODE is 1, the independent variable being plotted is TIME;

and, if CODE is 2, it is not TIME. Code equal to one may be implied,

if desired, by closing the parenthesis after TIME2,

The integer N is a positive or negativé number which designates
the number of frames of gfaph paper to be used when plotting the data.
N can be greater than one only when TIME is the independent variable
being plotted, If N is one, both N and the parenthesis may be omitted,

A frame is a unit of output paper approximately 7.5 inches square,
Two frames would be 7.5 inches x 15 inches; three frames would be
7.5 inches x 22.5 inches; etc. If the user decides to spread out the
TIME axis, he can do so by specifying as many frames, N, as needed to

achieve the result,

111

IL D. POST-PROCESSING MODULE

PLOT (Cont'd.)

GRID TYPE ‘
MNEMONIC ABSCISSA ORDINATE
LINEAR linear linear
SEMILG 1inear; logarithmic
LOGLOG logarithmic logarithmic
LOGSEM logarithmic linear

FIGURE 9, AXIS DESIGNATION FOR VARIOUS PLOT MNEMONICS

1 12"

IT D. POST-PROCESSING MODULE

PLOT (Cont'd.)

Normally, there appears one set of grid lines per frame of graph
paper. There may be times, however, when the user decides to place more
than one grid, one above the other, on a frame of graph paper. A maxi-
mum of three grids can be placed on one frame of graph paper. A nega-
tive sign preceding the integer N denotes that multiple grids are de=
sired., The number of coordinate names in parenthesis following N denotes
the number of grids needed. Since a maximum of three grids are permitted
on a frame of graph paper, up to tﬁree sets of coordinate names are per-
mitted inside the parenthesis. A maximum of three plots can be placed
oil one grid if multipie plots are desired. A positive sign or lack cf
sign for the integer N denotes that multiple plots are required with the
number of sets of coordinate names in parentheses indicating the number
of plots needed,

XI and YI are the user-given MARSYAS names of the system INPUTS
or OUTPUTS which are to be plotted, XI is the independent Qariable (the
abscissa), TIME or other system OUTPUT or INPUT name, and YI the depend-
ent variable (the ordinate). A maximum of three sets of variable names
may appear within the parenthesis of a given PLOT statement if paren-
theses are used, See BXAMPLE (1). As many PLOT statements as required
may be used within the Simulation Module so long as the total number of

graphs processed does not exceed one hundred,

113

IT D. POST-PROCESSING MODULE

PLOT (Cont'd,)

If a simple plot of one variable against aéother on one frame of
graph paper is desired, the integer N and the parenthesis may be omitted
from the plot statement. Then, up to one hundred coordinate names may
be plotted using a single PLOT statement, as

PLOT: grid type (TIMEl,TIME2,CODE), X1,Y1, X2,Y2, ..., X100,Y100$

mnemonic
(See EXAMPLE (2).)

Additionally, if the independent variable being plotted is time
(CODE = 1), the abscissa name, TIME, need not be specified, thus further
simplifying the PLOT statement, The PLOT statement would then become

PLOT: grid type (TIMEL,TDME2), Y1, ¥2, ¥3, ..., Y100$

mnemonic

(See EXAMPLE (3).)

ﬁXAMPLE @h)

The user decides to cross plot three OUTPUT variables with names
Vl, V2, V3 on a single sheet (one frame) of linear graph paper using three
separate grids. The reference time interval will be from 0 to 36 seconds.
The variables are to be plotted in the following manner: V2 vs. V1,
V3 vs, V2 and V1 vs, V3.

The PLOT statement is coded as follows:

PLOT : LINEAR (0.0,36.0,2), -1 (V1,V2, V2,V3, V3,V1)$

114

IT D. POST-PROCESSING MODULE

PLOT (Cont'd.)

Note that N=-1 indicates that one frame of graph paper is to be
used. The negative sign indicates multiple grids are needed. The three
coordinates inside the parenthesis indicate that three grids are required.
The execution of the above statement in an actual MARSYAS program is

shown in Figure 10,

EXAMPLE (2)

The user decides to cross plo# QUTPUTS V2 and V1 with V1 the
abscissa on a single frame of linear graph paper in the time interval
0 to 36 seconds. Since N=1, both N and the parenthesis may be omitted

from the PLOT statement as shown below.
PLOT : LINEAR (0.0,36.0,2), V1, V2$

The execution of the above statement in an actual MARSYAS program

is shown in Figure 11,

EXAMPLE (3) A |
A plot of system dUTPUT V3 against TIME is desired, on one frame

of graph paper with a linear grid. The time interval is O to 36 seconds.

Since N=1 and TIME is the independent variable, the abbreviated form of

the PLOT statement is used., Figure 12 is an actual MARSYAS execution of

the following statement:

PLOT : LINEAR(0.0, 36.0, 1), V3 $

115

N oo

‘ .
“ | -
,p—fé_ali’?‘ \5 T l
{7
g ! RSN /i
42 R RS /
- %%
=~
§=§:=__~\
1
-T%—t i _
40 i
{
44.8
45.0 5.2 45.4 45.6 45.8 6.0 76.2 46.4
V3
LR TS
it f
i puiea
46.0 } t A | /
L L i 4
[IR] 7
R =
t I s
45.5 ‘- 1) = T
:. B | 2] I LA et
LN | =T | £
T . ,g%f
45.0 .]| BRrS i
t O e | =
S ‘ . :—; 1t t ’:;’4,
I ; L] =
L '
Py e i G NRRANE
44 45.¢ R
45.9 46.0 46.4 46.8 47,2 47.6 48.0 8.4
v2
) I I
48.0 = /
-] ¥
i = // i
B - 3 /:‘ﬁ’g yu -
fers1
{]
i 9"& / i
rssF
46.0 =] /]
T i s”" .
l = P
N | - -
[HE e s S W -
40 -
1 . 42 43 4
vy

- IID. POST PROCESSING MODULE

PLOT (CON'T)

FIGU<3 10 EXAMPLE OF MULTIPLE GRIDS ON ONE FRAME

PLOT: LINEAR (0.0,36.0,2), =1 (VL,v2,
V2,V3, V3, V1) $
116

HUD. POST PROCESSING MODULE

PLOT (CON'T)

: i Tt T 7 T
- 1 o i : I 1
X] i L | i 1) IS
X i 1 | i . i ;
' l st s Sy AN
28,40 1 e B g
; X 7
J4
ST f -
TR Ni
\ L
4] y/
48.0 S i
= 14
IS ﬂl
y
N
A i
47.6 \ Ji
Ul I
il /i
1)
1 iﬁ
/]
) /4
47.2 2
Wi f
,{/
i
7 i
/ i -
it
46.8 / i
i
W
Wi)4
/4
Vi
[
v
46.4 7 7
7
/
y
7 V4
2] yd
A J 4
7. i
46.0 Y
rd
A)
il y 4
4
74 7
A
45.6 7
Vil / .
Y f"’é"
Az yA T
4 | 1 T
- 7 B
45.2 // A - :
i L v 1
S/ = A
g B e B S
v R N
p—— -
44812 S I e el e Bl ok et A
| - t t
40 41 : 42 . 43 44
Vi

FIGURE 11 PLOT OF OWE VARIABLE AGAINST ANOTHER
PLOT: LINEAR (0.0,36.0,2), V1, V2 $

117

1ID.- POST PROCESSING MODULE

PLOT (CON'T)

e ——

46.4

46.2

46.0

45.8

45.6

45.4

45.2

SN

o]

s

s vl

\
\\% - i
| -
Ll
] i

NEBEEN RN

REERR

| Py

1 1 H 1 .
8 10 12 14 16 13 20 22 24 26 28 30 32 34 36

TIME

FIGURE 12 PLOT OF VARIABLE AGAINST TIME
PLOT: LINEAR(0.0,36.0,1),V3$
118

—

II D, POST-PROCESSING MODULE

. PRINT

FORMAT -
(1) PRINT: name 1, name 2, etc. $
or
(2) PRINT: (output header title) $
COMMENTARY -

The PRINT statement specifies the names of the system input and/or
output data to be printed. FORMAT (1) above yields the standard MARSYAS
output print listing of six columns of data per page. The first printed
column is always the independent variable TIME., TFORMAT (2) allows the
user to specify a title heading which will appear at the top of the out-
put printed page.

The appropriate SAMPLE statement must be used in conjunction with
PRINT to indicate the print step desired (see SAMPLE), There is a limit
of one hundred input and output names that may be included in a given
'PRINT statement., The MARSYAS processor will automatically print the
indicated variables in groups of six until the output list is completed.
EXAMPLE

(1) Assume the user's system has three inputs, INPUT1, INPUT2,
and INPUT3, and two outputs, OUTPUTL and OUTPUT2, which he wishes to be
printed out, along with the header title FIRST TEéT CASE. He decides to
examine his input;output data at every fifth inﬁegration step. The

PRINT and associated SAMPLE statements would be coded as follows:

119

II D. POST-PROCESSING MODULE

PRINT (Cont'd.)

PRINT: (FIRST TEST CASE)$
PRINT: INPUTL, INPUT2, INPUT3,
OUTPUT1, OUTPUT2$

SAMPLE: STEP, 5%

When using Runga-Kutta, if instead of examining the output at every
fifth integration step the user decideé to examine the data at every
0.10 seconds, the PRINT statement would remain unchanged and the SAMPLE

statement becomes

SAMPLE: TIME, 0.10$

120

‘II D, POST-PROCESSING MODULE

SAMPLE

FORMAT -
(1) SAMPLE: STEP, integer number$
or
(2) SAMPLE: TIME, real number$
COMMENTARY -

The SAMPLE statement is used in conjunction with the PRINT state-
ment to specify the output printing interval., The print interval may
be expressed in terms of the independent variable TIME or the integra-
tion STEP size, 1If TIME is selected, the step size is taken in approxi-
mately equal increments of simulation time as specified by the real

number in Format (2) above.

EXAMPLE

SAMPLE: STEP, 5%

or B
\

SAMPLE: TIME, .05$
In the first example, the MARSYAS processor will list the output(s)

at every fifth integration step, whereas the second will list the out-

put(s) in time increments of 0,05 units,

121

SECTION IIIX

SOFTWARE STRUCTURE OF MARSYAS

122 B

III., SOFTWARE STRUCTURE OF MARSYAS

A. Introduction

The prime objective of the MARSYAS software is to transform a MARSYAS
program, which describes a model and specifies the simulation, into a
FORTRAN program that contains the arrays and subroutines for the numeri-
cal solution of the various matrix.equations. The MARSYAS software is
thus a precompiler which compiles the MARSYAS language statements into a
set of FORTRAN programs called the Object Program which is then executed

by the computer.

B, Overview of MARSYAS Software System

MARSYAS was originally designed for-use on a time-sharing machine
such as the Univac 1108 computer. The software permits several users to
access MARSYAS simultaneously from remote stations. An overview of the
MARSYAS software system is shown in Figure 13. The user's block diagram
and/or equations are coded in a MARSYAS program consisting of Description,
Modification, Simulation and Post Processing Module statements which are
punched on cards and fed to the computer. All Program Modules with the
exception of the Post Processing Module feed into the Simulation Program
Module which ultimately generates the FORTRAN Object Program. This, in
conjunction with the Library of Standard Elements and Excitation Functions,

is compiled with the FORTRAN Object Program and executed,

123

HARQSYAS- PROGRAM

Hi B, OVERVIEW OF MARSYAS SOFTWARE SYSTEM

DESCRIPTION
4ODULE
STATEMENTS

BLOCK DIAGRANM

=
TOUATIONS

MODIFICATION
#“ODULE
STATEMENTS

vian

SHAULATION
MODULE
STATEMENTS

VWMZ~ACOD

POST-PROCESS
MODULE
STATEMENTS

OZ—-—ZZ>Own

ROMIN BONDVDA

DESCRIPTION PROGRAM MODULE R

TRANSLATING CLOCK DIAGRAMS
A0 EQUATIONS INTO TEIMPORARY ?‘
HODEL DESCRIPTION TABLES & !
HAME DICTIONARY J

MODIFICATION PROGRAM MCDULE u

IRSTRTING AND DELETIRG FROM
MODZL DESCRIPTION TABLES

|-

=

TEMPORARY
INTERNMAL

Ji

|

TABLES !—\-"‘
A 1

SILULATION PROGRAI MODULE

SIAULATION TEMPQRARY FILE

~

Pt

HIRGING MODEL DESCRIPTION
TACLES

GINZNATING SINULATION
TEMPORARY FILE, CHANGE FILE

PATH-TRACING FOR LINEAR &
RONLINEAR INTERCONNECTION
ARRAYS

IDENTIFYING "ALGEBRAIC LOOPS'
CORVERTING "STRICT TRANSFER
FURCTIONS TO ""PROPERLY STRICT ™

e GEMNIRATING FORTRAN-- OBJECT

PROGRAM

CHANGE FILE

PCST PARAMZITIRS FILE

T
'9

I
€

FCRTRAM QBJECT FROGRAY

!

POST-~-PROCESSING PROGNTAM MODULE

GEMERATING CONTROL CODE IN

FORTRAN TO PRINT, PLOT, AND
RECORD SHAULATION RESULTS

|
|

oo =

a

o

a

-

°

°

o

IMTERCOMNECT oM EQUATIONS SCLYERS
ORIVER FOR MONLINEAR & EXCITATICN

FUNCTIONS LIBRARY ROUTINES

DIFFERENTIAL EQUATIOM INTEGRAT ON

ROUTINES
CHANGE LOOP
EXIT COMDITIONS ROUTINE

CONTROL ROUTIMES & INDICATORS
EXEC VI CONTROL CARDS
QUTPUT PROCEISSING ROUTINES

!
1
Y

LIBRARY OF STANDARD ELEMENTS
& EXCITATION FUNMCTIONS

FONTRAN-COVPILER

COMPILATION OF FORTRAN
OBJECT PROCRAM

FIGURE 13, OVERVIEW OF MARSYAS SOFTWARE SYSTEM

L,

Mg S

EXECUTION GF FORTRAN
OBIECT PROGRAM

SHMULATION RUN

PRINT-0QUT, PLOTTING

IIT C, LIMITATIONS OF MARSYAS

C. Limitations of MARSYAS

Within the complete MARSYAS proéram, there is one main MODEL and
up to 99 SUBMODELS permitted, Each SUBMODEL, of course, Bas all the
characteristics of a MODEL, Models and Submodels are each limited to
a maximum of 50 inputs, 50 outputs, 300 elements with restrictions as
noted below and 500 connections,

For the main model and all iﬁs submodels, the following restric-

tions apply:

There may be a maximum of:
350 constant multipliers
150 transfer functions, including integrators
If N; is the order of each transfer function, M
is the total number of transfer functions and

Z Ly & 400

400 nonlinear elements
4000 parameters
600 inputs to nonlinear elements

400 outputs from nonlinear elements

125

IIT C., LIMITATIONS OF MARSYAS

For the Simulation Module, the following restrictions apply:
There may be a maximum of:
125 EXCITE statements
600 STOP IF and TERMINATE IF statement words
30 simulation CHANGE cycles

400 parameter changes per cycle
A "word" is the number of characters divided by six.

The following restrictions apply to the Simulation Module:
There may be a maximum of:
100 plot éerminals
100 graphs
100 print terminals

350 Hollerith words for PRINT title statement

126

SECTION 1V

MATHEMATICAL STRUCTURE OF MARSYAS

127

IV. MATHEMATICAL STRUCTURE OF MARSYAS

A, The State Space Approach

wARSYAS has a basic mathematical structure whicﬁ incorporates the
lat~st and most up-to-date mathematics associated with modern control
theory. The state space approach is used throughout, and directed graph
theory is used to detect and unwind.aléebraic loops automatically, These
methods have considerable advantages over older, classical methods.

There are no known methods that will solve everyAset of nonlinear
algebraic equations., Therefore, whilé many nonlinear loops can be
solved by MARSYAS, some will arise which will not converge. However,
most all cases of linear loops can be handled. An overview of the mathe-

matical process which is the foundation of MARSYAS appears in Figure 14.

B. Numerical Integration Techniques

The FORTRAN Object Program generated by the MARSYAS processor uses
precoded subroutines to control the numerical integration and detect
discontinuities which may exist in the model., Since serious errors may
arise when integrating through discontinuities, the MARSYAS system auto-
matically switches integration methods when a discontinuity is detected.
It integrates through the discontinuity using Euler's method. Euler's
method, being oflfirst order, will yield more accurate results at dis-
continuities than higher order methods. Once past the discontinuity,

the original integration scheme is resumed,

128

6C1T

EXTERMAL DESCRIPTION
OF MODEL SYSTEM
(USER)

}c_

IVA, THE STATE SPACE APPROACH

INTERNAL DESCRIPTION OF

MODEL (MACHINE)

Intcrconnection Matrix Equations

{B 5 Intercannections

EO+FU+KY

ALGEBRAIC LOOPS

Detection of
Algebraic Loops by

Q
IR]

Graph Theoretical

ety

SYSTEMS
CHARACTEZRISTICS

>1

peg| . E”O *F ,l'j + K 'T Techniques
. WZE"O+F'U+K'Y
. !:inﬂcr 4 f*&onlinea;]
Y Lincar | State Variahie Matrix Equations
B : Trensfer Functions F> Dynamic - .
ry Elements —2> = AN L. . it
I E ‘f Lincer Differentiol Equations ot lyeot Xiz A Xy + Pyl o i
0; =C; X; Rcronhgurohrn Sequencing of !
P & Modrix Nentineor 4
b Vo ts oeen laveesion of Elements Within E
1B Nonlinrcer Blocks T Lirear Loops ! ! Nonlinear Loops |
i{B’ Logical Functions] Nonlinecar ﬁ Impiicit Menlineor Functions |‘ i
Ll , Elements = T L
| E } Algebreic Equations o fovem] Y; = Fi (R) S r“m—’_’—’-ﬂ
. - i 2 Jeeam — fAatrix
“" Forironw Programs T~ ’\(x Manipulotion i4
I J
B Block Diagram
E Equatians . .) .
P Fortran -Progroms <7~ Numerical Selution per Time Step fit -L\{ 1 Qverail Sysiem {
3 ! | State Variable lotix Squotions ‘:
Ali Voriobler are Vectors ¢ Numerical Integratinn of State Yeriakle Equation i —).(: A" X+ P U4 N(OUT) 5
Input of System (Known) n e e R i i i H i R W= Cr X4 DU (0,UT) a
Qutput of System W Xn4+1 T Xa+ht £ ¢ F (X, i) 2] o :
P2
Input to Dynamic Elements { i P o
X
Qutput of Dynamic Elcmonts [¢]] q 3
: V Various Systems Analyscs i
jnput to Noniincar Eloments R s 2y S i yacs
' k Using A", P*,C*, and D*
Output of Nonlinear Elomonts Y Computation of O, +1L, Rndt, Yasl, Vot T P SUS— i
State Yector X
Derivative of State Voctor X
All Cortficiants are Matricoss iterative Solution of Nenlincar Algcbraic Equation ‘
= (Newton~Raph<on)
E,E'E&",F F,F KK, K, o @ :
APC LrE) > () CEF R P N
Ragr =R (K) nt1 " Fasi
A%, P,C*,D* n¥ ar)

FIGURE 14. OVERVIEW

CF MATHEMATICAL PROCESS

IV B. 'NUMERICAL INTEGRATION TECHNIQUES

1. Runga-Kutta Method

The Runga-Kutta-Gill numerical integration scheme used by
MARSYAS is the fourth-order single step method which approximates the

solution of the state equation X(t) = F(X(t), t) at t = (n+l)h by

X4 =X + }6—1(K1+2(1—\/TS')K2+2(1+\/’.—5)K3+K4)
where
K1=F(§<[1, tn)
Ky = F(X, + Kjh/2, t, + h/2)
K3 =.F()‘(n— & -A\/'E) Kh + (1 - /.5) Kh, t, +h/2)
Ky, = F(X, - V.5 Kh+ (L + +.5) Kgh, t, + h)

and h is the step size specified by the user.

2, Adams-Bashforth Method

MARSYAS actually uses the Adams~Bashforth predictor with the
Adams-Moulton corrector in solving the state equations. These multi-step

equations approximate the solution of the state equation as follows:

Adams-Bashforth predictor:

h ° ° o 9
Xp4l = Xp t 3z (55%, - 59%,.9 + 37x,.9 - 9%, 3)

130

IV B, NUMERICAL INTEGRATION TECHNIQUES

Adams-Moulton corrector:

’

_ h
Xpt1 = X T o7 (9Xn+1 + 19%, - an-l + Xn-2)

These predictor-corrector equations have a definite advantage
with respect to solution time over the Runga-Kutta method in thét at
most two derivatives must be calculated at each time step whereas the
Runga-Kutta method requires four derivatives, The automatic error
estimation procedure inherent in the predictor-~-corrector scheme allows
the predictor to select the optimum step length that satisfies the built-

in error criterion, thus further speeding up the solution time.

3. Euler's Methed

Euler's method is implemented automatically whenever the MARSYAS
processor detects the presence of a discontinuity. Euler's is essentially
a first-order single step method of the form

X(n+l) = X(n) + X(n) h

The integration step size h is measured from the end of the
last full integration step before the discontinuity and extends past the

discontinuity as shown in the sketch below.

<g— fj —]

!
n 5 i+ {

131 -

IV B. NUMERICAL INTEGRATION TECHNIQUES

Thus, if a discontinuity occurs at time .t=b, then the integra-
tion method will change to the Euler method at t=tn and back again at
t=tn+1 to the method of integration used before the discontinuity was
encountered,

If the user has several discoﬁtinuities in his system, it is
recommended that Butcher's method 6r the Runga-Kutta method of integra-
tion be specified (using the INTEGRATE_statement) sinée the solution time
will often be less than when using Adams-Bashforth,

Should the need arise, the user can disable the Euler-interrupt
so that the selected integration scheme can proceed uninterrupted. Addi-
tionally Euler's method can be used for the entire simulation if desired.

See INTEGRATE statement in Section II C,

4, Butcher's Method

The Butcher's numerical integration method use in MARSYAS is a
fifth~order, six~-stage Runga-Kutta scheme which approximates the solution

of the state equations as follows:

X x_ + D (7K1'+ 32K

1 = %2 T 500 + 12K f 32K5 + 7K6)

2 4
i
K, = F(xn,tn)
K, = F(xn + th/4, t + h/4)
Ky = FGe 4 kB8 + Kph/B, t + h/4)

K, = Flx_=-Kh/2+Kh, t+h/2)

132 -

IV B. NUMERICAL INTEGRATION TECHNIQUES

~
1]

F(x_+ 3/16K;h + 9/16K h, t + 3/4h)

~
n

F(xn - 3/7K1h + 2/7K2h + 12/7K3h - 12/7K4h + 8/7K5h, t + h)

and h is the step size specified by the user,

5. Sarafyan Method

The Sarafyan variable step method is essentially an embedding
of Runga-Kutta formulas to achieve step size control. The Sarafyan '
method used in MARSYAS is essentially a fifth-order, six-stage Runga-Kutta
formula (Butcher's) with an imbedded second-order Runga-Kutta formula used
to determine the appropriate step size, The fifth-order, six-stage formula

is the same as that used in the Butcher method above and the second-order

formula is given by

xn+1 = xn -+ h(-K1 + 2K2)
where

Kl = F(xn, tn)

K, = F(x_+Kh/4, t +h/4)

and h is the step size.
The higher and lower order Runga~Kutta schemes are compared
so that an estimate of the accuracy can be made, Then a judgment is
made on the current value of h being used. If h is too large, it is
halved. 1If too small, it is doubled., If just right, it is left as it is.
Computation accuracy using the Sarafyan method is high and
computation speed fast. Depending upon problem being simulated, computa-

tion speed can be increased significantly over fixed-step methods,

133

IV B, NUMERICAL INTEGRATION TECHNIQUES

Other numerical integration methods will soon be added to the
MARSYAS language allowing the user greater flexibility in solving his

problems.

134

IV C. SOLUTION SCHEMES FOR DIFFERENTIAL EQUATIONS

\

C. Solution Schemes for Differential Equations

When using the EQUATION option in solving a set of ordinary dif-
ferential equations, the user must check to see that a solution exists.
In other words, it must be possible to construct a "solution scheme' for
the system of equations. A solution scheme is an assignment of variables
to the equations such that the following three conditions hold:

1. There must be one independent equation for each unknown variable,

2., The highest order of each va%iable derivative in the set of

equations can be '"assigned" to one particular equation of the
set, No two variable derivatives can be assigned to the same
equation,

3. The order of the variable derivative assigned to a particular

equation must be the highest‘order for that variable as it

appears in the system of equations.

EXAMPLE (1)

Determine if a solution scheme exists for the following set of
\
differential equations:

1) aX + bYX +Z = 0
2) ¥+72 = 2xy
3) F4+% = 0 B o

In the above set of equations in three unknowns, X, Y and Z, the

three highest order derivatives are X, Y, and Z. They can be assigned

to equations 1), 2) and 3), respectively. Hence a solution scheme exists

for the system of equations.

135

IV C. SOLUTION SCHEMES FOR DIFFERENTIAL EQUATIONS

il

EXAMPLE (2)
Determine if a solution scheme exists for the following set of

differential equations:

1) X+Y+Xy = SIN (X - Y)

2) X¥-XY = 0

These are two equations in two unknowns, X and Y, whose highest
order derivatives are X and Y. The derivative X can be assigned to
equation 1) and Y can be assigned to equation 2). Hence, a solution

scheme exists for this set of equations.

EXAMPLE (3)
Determine if a solution scheme exists for the following set of

differential equations:

1) ¥ +%+XY = TAN (3X% + 2Y)

2) XY - X = 0

The above two equations in two unknowns X and Y have highest
order derivatives X and Y. Since we cannot assign two variable deriva-
tives to the same equation, no solution scheme exists for this set of

equations.

136

SECTION V

OPERATION OF THE MARSYAS SYSTEM

137

V. OPERATION OF THE MARSYAS SYSTEM

A, Deck Setup for MARSYAS Operation on the Univac 1108 Computer Under
EXEC VIII

The following computer control cards are required to run a MARSYAS

program on the Univac 1108,

@RUN,

(@ASG ,X MARSYAS*MARSYAS

@ASG,T 1,F

@ATA,T 1

MARSYAS DECK

@END

@ADD MARSYAS*MARSYAS,

@FIN

B. MARSYAS Diagnostics

There are two distinct types of error diagnostics in the MARSYAS
system, Statement Error Messages and Module Error Messages, The first
type deals with errors encountered in coding a given statement. When
an error of this type is detected, the processing of the MARSYAS state-
ment is terminated with aﬁ error message., That portion of the statement
in error is indicated with a series of backward slashes (\) under the
printed out statement., An error diégnbstic is then printea out to aid
the user in corfecting the problem, Since the MARSYAS processing termi-
nates after processing a group of errors, the user should recheck his
program td be sure no more errors.are present in the non-processed por-

tion of his program,

138

V.B:. MARSYAS DIAGNOSTICS

»

The second type of error diagnostic will appear when the user vio-
lates the structural pattern of MARSYAS. Examples of this are if the
user should inadvertently place the Post Processing Module before the
Simulation Module, or if he forgets to place an END$ statement at the
end of a Module and so on. If a system is incompletely defined by
leaving out elements, connections, inputs, outputs, excitations, and so
on, the errors will be grouped at the end of the appropriate Module
under the heading ''MODULE ERROR SUMMARY,"

When Module Error Summary diaénostics appear in conjunction with
coding errors, they can usually be ignored until all coding errors have
been corrected, This is due to the fact that the Module Error Summary
diagnostics were generated as a result of the incomplete processing of
the statement containing the coding error.

A complete list of the MARSYAS diagnostics appears on the follow-

ing pages.

139

ovl.

V B, MARSYAS DIAGNOSTICS

Statement Error Messages

NUMBER OF LEFT AND RIGHT PARENTHESES DOES NOT
MATCH, :

Any parentheses that are opened must be
closed.

IMPROPER PUNCTUATION, A COMMA IS EXPECTED,

IMPROPER PUNCTUATION., A $ SIGN IS EXPECTED,
The statement has not been completed
properly.

IMPROPER PUNCTUATION. A COMMA OR $§ SIGN IS
EXPECTED,

IMPROPER PUNCTUATION, A LEFT PARENTHESIS IS
EXPECTED.

IMPROPER PUNCTUATION USED IN TERMINATING
SEQUENCE,

EXPRESSION CONTAINS TOO MANY RIGﬁT PARENTHESES.
IMPROPER PUNCTUATION., A SEMICOLON IS EXPECTED,
WORD EXCEEDS 36-CHARACTER LENGTH LIMIT,
WORD BEGINS WITH IMPROPER FIRST CHARACTER,
A MARSYAS word must begin with one of the
characters ABCDEFGHIJXKLMNOPQRSTUVWXYZ0123

456789 , Words which are not numbers must
begin with an alphabet letter.

WORD CONTAINS AN INVALID CHARACTER,

WORD CONTAINS IMPROPER NUMBER OF CHARACTERS,
OPERATOR WORD IS NOT A MARSYAS OPERATOR.
OPERATOR SHOULD BE INPUTS (OUTPUTS).

OPERATOR WORD MAY NOT BE USED MORE THAN ONCE IN
A GIVEN MODULE, ’

EXPECTED OPERATOR NOT CORRECT.

FUNCTIONAL DATA BASE PASS WORD INCORRECT OR
MISSING.

EQUATIONS MUST HAVE TWO SIDES,
INVALID OPERATOR IN PRESENT CONTEXT.
ONLY VARIABLES (NOT TIME) MAY BE DIFFERENTIATED,
MNEMONIC WORD IS NOT A MARSYAS MNEMONIC.

INTEGRATION MNEMONIC (CONSTRAINT) IS NOT A
MARSYAS MNEMONIC (CONSTRAINT).

MNEMONIC IS NOT A MARSYAS ARITHMETIC RELATION,
The MARSYAS arithmetic relational operators
are EQ, NE, GT, LT, GE, and LE.

CIYT

V B. MARSYAS DIAGNOSTICS

Statement Error Messages

WORD IS NOT A MARSYAS LOGICAL OPERATOR.
The logical operators are AND, OR, and NOT.

IMPROPER GRID TYPE MNEMONIC.
IMPROPER SOLUTION MNEMONIC
IMPROPER SAMPLE MNEMONIC,

IMPROPER NUMBER OF PARAMETERS GIVEN FOR

IMPROPER PUNCTUATION, A COLON IS EXPECTED;

IMPROPER NAME TYPE USED AS ARGUMENT,
The statement requires a different type of
name in the argument position.

ARGUMENT SHOULD NOT BE DEFINED IN NAMING
STATEMENT,
The "old name' in a NAMING statement argu-
ment list and the 'mew element" in a
SUBSTITUTE statement should not be names
defined in a NAMING statement.

THE ARGUMENT HAS BEEN USED PREVIOUSLY IN THIS
OPERATOR CONTEXT,
Certain operations may be performed on a
given argument only once.

TIMESTEP CONSTRAINT SHOULD BE SPECIFIED.
If the Runga-Kutta integration procedure is
used, an integration step size must be
specified,

ORDER OF A TRANSFER FUNCTION MAY NOT BE VARIED,

MORE THAN ONE WRITE PARAMETER HAS BEEN SPECI-
FIED IN THE MODULE,
A POST-PROCESSING module may write output
at only one sample interval,

CANNOT CHANGE GAINS WHEN THERE ARE LINEAR
LOOPS.,

IMPROPER NUMBER OF INITIAL CONDITIONS,
IMPROPER ELEMENT TYPE IN SUBSTITUTE STATEMENT,
EXPECTED ARGUMENT IS INCORRECT TYPE.

IMPROPER NUMBER OF ARGUMENIS,

NAME HAS BEEN DEFINED MORE THAN ONCE,

A MARSYAS name ‘should be defined in only
one statement,

NAME IS USED INCONSISTENTLY.
Characteristics which are implied by previ-
ous uses of the name are inconsistent with
the present use of the name.

ot

V B. MARSYAS DIAGNOSTICS

Statement Error Messages

PARAMETER HAS BEEN GIVEN TWO VALUES.
NAME IS NOT IN MODEL DICTIONARY,

MODEL NAME ALREADY EXISTS IN FUNCTIONAL DATA
BASE,

MODEL DOES NOT EXIST IN SYSTEM.

SOURCE CODE STATEMENIS ARE MISSING.
The program is incomplete,-

SOURCE PROGRAM CONTAINS TOO MANY STATEMENTS.
A MARSYAS deck may contain 99,999 state-
ments,

THE SIMULATED SYSTEM IS TOO LARGE,
The MARSYAS system allows for 218.1 distinct
sequence numbers (objects).

MODEL IS NOT INCLUDED IN THE SIMULATED SYSTEM,

FIRST STATEMENT OF PROGRAM SHOULD BE A
MARSYAS BEGIN,

PROGRAM NAME IS INCORRECT,

MODEL INCORRECTLY RECORDED IN DESCRIPTION
TEMPORARY FILE,

FUNCTION WORD IS NOT A MARSYAS FUNCTION,

CONTINUATION NUMBER REQUESTED NOT ON CONTINU-
ATION FILE,

END STATEMENT SENTINEL MUST MATCH BEGIN DECK-
NAME,

A TERMINAL OF AN INCLUDED MODEL HAS NOT BEEN
CONNECTED,

FUNCTION (MATH REFERENCE) HAS INCORRECT NUMBER
OF ARGUMENTS,

USER DEFINED FUNCTION NOT ALLOWED AS A MATH
REFERENCE,

NUMERIC FIELD CONTAINS AN IMPROPER CHARACTER.,
Besides the digits, a numeric field may con-
tain a sign, "E" or ".", and only these
characters.

THE VALUE OF THE NUMBER IS TOO LARGE OR TOO
SMALL, ‘)

IMPROPER USE OF NUMERIC "E" FORMAT,

THE NUMBER USED IS NOT PERMISSIBLE,
Certain numbers must be integers (non-
negative, positive, non-negative integers,
etc.). Element subscripts and parameter
numbers should be positive integers less
than 212,

el

V B, MARSYAS DIAGNOSTICS

Statement Error Messages

LENGTH OF PRINTED LINE EXCEEDS THE LINE LIMIT,
An output line may be at most 132 characters
long.

NUMBER IMPROPERLY FORMATTED,
A TRANSFER FUNCTION PARAMETER B(N) IS ZERO.
MODULE BEGINS WITH IMPROPER OPERATOR,

THE OPERATOR IS NOT PERMISSIBLE IN THE PRESENT
MODULE,

AN END STATEMENT MUST PRECEDE A NEW MODULE,
A module in a MARSYAS program is completed
with an END statement. A new module may
begin after the END statement,

THE SEQUENCE OF MODULES INVOLVING THE PRESENT

MODULE IS INVALID,
The order of modules for a given model
must be chronological, e.g., a model must
be described before it is modified or
simulated,

THE MODULE CONTAINS AN IMPROPER COMBINATION OF
IF STATEMENIS,

SYSTEM HAS NOT BEEN PREVIOUSLY SIMULATED,

SYSTEM HAS BEEN PREVIOUSLY SIMULATED OR
CONTINUED,

THE CONSTRAINT ILLEGAL IN PRESENT MODE,

S g s

91

V B, MARSYAS DIAGNOSTICS

Module Error Messages

IMPLIED INTEGRATION AND DEFAULT INTEGRATION
METHODS DO NOT AGREE,

MINIMUM TIME STEP LESS THAN STEP SIZE,

NO EXCITATION FUNCTIONS HAVE BEEN SPECIFIED
FOR THE FOLLOWING INPUT TERMINALS;

EXCEEDING SYSTEM CONSTRAINTS CREATED AN ABORT
SITUATION,

NO MODEL OUTPUT TERMINALS HAVE BEEN SPECIFIED
FOR THE MODEL,

NO ELEMENTS HAVE BEEN SPECIFIED FOR THE MODEL,

- THE MODULE CONTAINS NO PRINT OR PLOT STATEMENTS.

A TRANSFER FUNCTION ORDER HAS BEEN CHANGED
ILLEGALLY,

THE FOLLOWING MARSYAS NAMES HAVE NOT BEEN PRO-
PERLY DEFINED IN THE ABOVE MODULE:

THE FOLLOWING CONNECT STATEMENTS CONTAIN
IMPROPER OR AMBIGUOUS CONNECTIONS:

THE FOLLOWING TERMINALS HAVE BEEN CONNECTED AN
IMPROPER NUMBER OF TIMES:

THE INITIAL CONDITIONS FOR THE FOLLOWING TRANS-
FER FUNCTIONS ARE INVALID:

SECTION VI

EXAMPLES OF THE USE OF MARSYAS

145 -

VI. EXAMPLES OF THE USE OF MARSYAS

A. Mechanical Extension Device - Example A

An analysis of the motion for a mechanical extension device has
resulted in the mathematical model presented in Figure 15, The motion
of the device is represented by the quantities @1, 92, 65 and 94,
which are the required outputs, The system input, ¢, is subjected to a
ramp input with slope 25,136 units.

The system differential equation, as shown in Figure 15, is of

the matrix-vector form

ACO)Y 6 +B()Y(6) +c@ +DU0 = 0 (1)

This system of equations is solved for é as
6 = al (o) [-B(G)(é)z-ce - DU] (2)

There are two methods of solving Equation (2) using MARSYAS: the
block diagram method and the EQUATION method. The block diagram solu-
tion of Equation'(Z), shown in Figﬁre 16, makes use of specially con-
structed DEVICEs to perform the required matrix multiplications, The
EQUATION approach solves a collection of scalar differential equations
in conjunction with one DEVICE to éerform the multiplication by A_l.

The computer printout of the MARSYAS programs using each method is shown

146.'.

VI A, KECHANICAL EXTENSION DEVICE - EXAMPLE A

; 7 ;
02 (65) €, 6
A e B .2 c D 0 =
6 | @p? | T ¢; | * 6
@4 (@4)2 94
VHERE (0=iy) b cos (82_@‘) ccos(93..81) d ros (84-9])
A= bcos(@z—gi) (b—iz) ccos(@:;..@z) d cos (@4-@2)
- ¢ cos (@3_@]) c cos (@3_{}2) (c~i.3) d cos (@4-@3)
d cos (@4 -61) d cos (94 -87) dcos(@4—@3) (d-ig)
0 -bsin(@r-9y) -csin(@3-6y) - s;n<@4_9.,)}
o b sin (92—@1) 0 ~¢ sin ((93..@2) —d sin (@4_82) |
c T c sin {83 -01) ¢ sin (83 -87) 0 ~d sin (04 ~03)
d sin (94 -81) d sin (B4 ~09) d sin (§4 -~ 83) 0
C 2%, ~k; 0 0
| ~ky 2kg -ky 0
CETTS] 0 kg 23 kg
R 0 0 —k4 k4
C —ky 0
| 0 0
P=-1T1 o o
0 —ky

FIGURE 15 MATHEMATICAL MODEL OF MECHANICAL EXTENSION DEVICE

147

DX

VI A, MECHANICAL EXTENSION DEVICE ~ EXAMPLZ A

1

FIGURE 16, BLOCK DIAGRAM OF MECHANICAL EXTENSION DEVICE

U T

1 2L3{'4J
AD1 A jf_XL X ey
‘ >@ 5 I g Ul i X]’\# £ 12— > 0
2 \ {‘1 6 10 2] == 0 e
- =t ™ AN T NG T~
3 AD3~ 7 oy 7.0 A w3l o A;me)—(_g ke RN \22
i a -7 e R B
4 AD4~ (8, 12 U4 &,:j\frlxaﬁm s I S >/)3
TH R g Z “! /"“\7,3 ‘”'.'!ix\‘aﬁ ar ./4
1) |1
7! ¢<?
/ I
3 cX ‘;/’3
4 L4
L
5/6/7/8
LAY
2] \ 2
30 BX 3
4t |4
[—

VI A. MECHANICAL EXTENSION DEVICE - EXAMPLE A

on the following pages. Note that the translation time for each module

is automatically printed out with the coding.

149 -~

VI A, .MECHANICAL EXTENSTION DEVICE - EXAMPLE A

(Block Diagram Option)

BeEGING EXAMPLEAYS

Dt

CACL s 4P (7)) COS(U(Y = (1)

CA(24:2)=P(2)

CAL342)=A12,3)
A3, =R(7)1.C0S (U U30)

_A(‘{’Z,—A(791

viges AINVs 83 45 7%
SUBKUOUTINE AINV(U,Y ;1)

DIMENSTON U(g),Y(4),P(7)

DIMENS[UN A(4,4),V(3)dC (94X (%)
Alrstd=ply) ,

Al s2¥=pis)aCostuiz)-ul1)) o -
Alls3)1=P(6)2CUS(U(3)=U(]))

A2yt 1=A(],2)

A(Z2,3)=P(6)aCOS(U3I=U(2)Y
ACZy4)=P(7)5COS(ULHI=U(2))
AC3s101=A01,3)

Al3e3)1=FP (31

Alds1)=A(]4)

ACHs3)2A08,4)
ALH4,H) =P (1)

NE Y
e NUIB3LO
CALL GUR(A M NN, N, SI5C,JC,V)

) Do 290 I=).4 e
200 AC1h=uluey)
_ =4 . el
N= .)
L CALL MXMLT(A X Y M M N Mg M) - .
GO 1O 490
190 IF (VL)) 152,151,152 L .
151 WRITE (64153)
1513 FORMAT (¢ MATRIX A |35 SINGULAR?)
STUR ’
152 WRITE (6,1549)y e
154 FORMAT (¢ OVERFLOW?Y)
57T0P
‘*{D.()‘ T 'RgTUHN o cooTmT s e
o END
DEVICET B8, 8, 4, 35 CoTm

SUBROUT jwe 8BLUY 4P

DIMENSION U(B) ,Y(4)sP(3)
DIMENSTION B(4s4),X(4)

Bl l)=d,
BO1s2)= PO1IsSIN(U(2)=U(1))

B(le3)= P(2)eSIN(U(3)=U(1))
B(ly“”: PU3)sSIN(U(4)I=ULLT)

BUZrt)= Prd)yeSIH(U4)-U121)
_b(J:)’="H(¢.,3)

B335 PUI)SSIN(UL4)=Yl3))

Zyl)z=BB(1,42)
8(292)‘09 o
Bl203)= Pl2)asINlU{3)=U(2))

3(3.1)-'-'1;(1,3)
B(J,,&)-.Uo T T T T
U(q,l)znﬂ(l,q)

150

VI A.

DEVICE:

MECHANICAIL EXTENSION DEVICE - EXAMPLE A

(Block Diagram Option)

Bl 2)==08(2,4)
B{493)==303,4)
B{d,y4)1=0.

NDOo 10 [=1,4
XCI)=Uul[44)ns?
e S
Nz}

CALL MXALT (R, X, Y M M N M,

REFURN
EnD

SUBKOUT JHE MC{U,YP)
DIMENSTON ULY),Y(4) PLY4)
REAL K

DIMENSLTON K(H44)

MCy 49 4, 45

M).

T T UKLy =24P (1)
RKiElsy2b==P (1) o e L
I B B B Y PO
K(ls4)=Ue o
T k(24)==pP(2) T - _
K(232)=25P(2) o o B
) Ki2s31==P(2)
K { 2 [] 4) =U L3
T T K 3, =0 T
K(342)a=P(3)
o __—”!(('3;"3):2*}9(3) - B - i
K{3,341==P(3)
K44 1120 o T
K(452)=0.
N TR U4, 3y ==P ey T o
K{4,4)r=t(4)
SRR . _ L
Ne i
T CTALL MXMLT (R, U, Y M M N My))
RETUKN
Lo T
NDEVICE:S DM, 2, 4, 2%
T T U SUBROUTINE DHMI(UY R o T B
DIMENSTON Ul2),Y{4) P ()
DIMENSTION D(4,2),
DLyl)r==P11)
op{iy2y=d4g " T T~ T T oo
D(2 i. 'Y=
TTTTTTTT T D2y 2 =0 oo ToTTTmrTr
D{3s1)=0e
T T D3y 2y T T T T T -
Dlgs) =0, .
Did,21==P(2y T
M=
- TUN=Y T o oo o - T T oo
1.=2
CALLL MXMLY (D, U, Y M L gMyMy L) -
RETURR
- ENOTTTTT T T T ”

MODEL
IMPUTS:

151

EXTLHSIONDEVICES
THETAD, DELTAS

VI A, MECHANICAL EXTENSION DEVICE - EXAMPLE A
, (Block Diagram Option)

QuTPyYTS: THETAL, THETAZ, THETAS, THETA4S
ELEAENTS AINV, AX(&eH23318h, 6,361275, 6,299 165, 3.242055 bedehils,
603041459, £.,212055)18%

.o

: BR, BX (6366275, 6,304145, 624209518
B o & MC, 0 Cxli0es 1oy 1fHes 105 L
: D™, DX(10e, 10,18
. AD, ADL, ADZ, AD3s ADYS] o o)
: SN INL, Li12, 143s twH, ING, IN&6, IN7, IN8%

.CU“NECF: o THETAD, 1HDXal, AD), DyAX®]e TNl [M2s THETALS

: DELTAs 2HDXH29 AD2Z, &L¥AXH42, [N3s IN4, THEYA2S
8 DXB3y AD3y THAXT3 . IND, INg, THETA3S e e e
H DAYy ADY, B8HAXEY, (N7, INg, THETA4S
. _ : IN2y 1uCxsls ADYS L _ o o . L _
: INYg, 2uCrti2, ADZ2S
B 2 INg, 3aCra3, AD3S e
: IMBs "uCAnd,y ADYS
S SO 1 1 122 SR O . O G0 T O
: I[Ny 2HBOKS
: INGy 3pRRS _ B _ L . — ~ .
: IMBs 48HAXS
B R I™M2, tuBXH], ADLS _ . o L . B
: INgy 28BXX2, ADZS
. 8 INGb6y 3nBA¥3, ADSS e
: PnNBs 4dBRB4y ADYS
. ANl 58X o . - R
H IN3y bHYXN
o R INGs 768835 o) e o
: IN7, g84BXs
e _ENDS R —

MODEL 1e5}34QQ SECe

SIMULATE] EXTENSTONDEVICES T T
_ EXCIHTER » DELTAS FRAMNP (2561361, THETAO, ZEROS

STOP]F: TIMEeGToon55 T T T T T e e e e

ENDS

AL INITIAL CONDITIUNS HAVE GEEN UEFAULIED To ZERO,

USIMULATE Te3 #3600 SEC, T T
o PRINT: DELTA, THETAL, THETAZs THETA3, TrETA4S .

SANPLE STEP,; 1$
ENDS

POST PROC

oc 30434200 SEC,
EXAMPLEAS

END S

CToTAL™ 5eh75600 SEC,

152

VI A, MECHANICAL EXTENSION DEVICE - EXAMPLE A
(Equation Option) : S

CBEGING . EXAMP LI A e o e e e e+ e e e 7
DEVICE: AINV, 8, 4, 7%

SURRNUTINE aAlNV(IU,Y P) . - - - S -
DIMEHNSINN U(8),Y(4),P(7)
DIMEHSTUN A(Y9;M) ,VI3),J004),004) ‘ o T
Alts1)sP (1)

T T ALy 2 =P (6 e COSIU(2V)} T T T T T T s e e e e
A1 ,3)=P (615COSIU(3V (1))
AL,y 4)=P(7)eCOSIUYY=U(1YY T T e mmroimanmmom s ST
Al2,1)=A(1,2)
Al2,21=P(2) Co S S st e mes
AlL2,3)5P(6)cCOS(U(3)=LI(2))

CTTTTT TR, 48P (7)) s COSIU A S P T TTTTT TT TTTTT m e eneemmeT o
AL,)=h(1,3)
Al3,?)=A (2, 3) o T e TTot TomTotT T mommmmem T m o mem e
Al3,3)1=P(3)

o7 Al3,4¥=P(7)s00S(U{4)Y=3(3YY — ~— -~ o o momm e TTTmTTT T o - Tttt
AL, 1 =A(T,4)
T ‘A'(oo Y=A gy “T° 0 TTmeEmTmTmTT T T S S e S T S S e T S e e e e

Alh,3)=r(3,4)
CACH B YRR (H) T T T T I smmnen Sesm ST on o Tm T
N=Y

Vi)Y =3,0 ' e - S s
CALL GUREAGN N N, N,5150,0C,V)
DD 200 - 1—1,qw- e e e e S T T S I mmm e -
200 SERELIRER R
L - - -- - EREE — - R e e e e D U

M=
CCALL MXTILT (A XY 4 1 N M, M) o ot T e It
GO 7o 4ng
B -1 I B SR o B B TS T - A 113
151 WURITE (6,153)
153 FORMAT (¢ MATRIXY A IS SINGULLARY) T T T TToTo o Tt T TI e T e
STOP
152 WRITE (6,154) - T TTUTT o TTonT o TTT Tt TmonTTn Tm T T o ns e
154 FORMAT (¢ OVERFLOWY
e - ¢ £ At : - -
400 RETURN |
END : : s - - S s s e e
HonEL : EXTENS IOM”FV?CE, FQUATIONS :
INPUTS: TG, DELS T e e e
CUTPUTS ¢ T0l, Y02, TN, TO4%
S EQUATIAND 7 m P 2T B s ST e v TLe v T2TS TN T) T2 Y TR T w TSI (e Ty T
e ¢ T3 = 71) = T3 v ¢ 2 + D & Sl{le ¢ Ce T4 w
T) & Tu ¢ e 2 3+ 2 ¢ K o Tl K & '72 = K &« 'TDp % ~° —°-
R & ST1l1e Lo T2 =« T)) & T1 % ¢ 2 ¢+ C & SI{ls
e » T3 ="T270 ¢ TA7Y 24 274 D% SIUVe 37 706 3 "TH =7
T2 } & T4 ¢ 2 2 <« K & T} + 2 2 K & T2 ~ X o 73 3%
S i AP T Sea AT Gl Dt o8 B o CTTTTYTETTYT VR T 2 et O TSI ey
Co T3 = T2) ¢« Tz ¢ ¢o Z2 ¢ 0 e Sl{le Go T4 -
T3) ¢ T4 ¢ 22 20w -0 T2 #7270 K 0T 3 Ko E TS T
Doe Stlye e T = T1 } & Ty * mg 2 « D & SI{},
o T4 = T2) 8 727 % a5 2 =D e ' ST{1e7, "0 T4~
T3) 2 T3 ¢ &9 2 « K & T3 ¢ ¥ & 74 = K & DEL &

<

rn2

>
4]
]

VO

P4y

1)
2

»

m s p s — e B 3L K2 G T TTTITT m mmmm - - R
: C = 6£.3054165 % B
el : o) .) 153 ’ o - T AT o s e

. - Er"Dg -— P v~ el . e e e - ‘- e cer - cmem o o e e amaw m e e ek . AG A & e mAA— v e+ e e e e w e A am . b S m e
SIMULATE: FXTENSIOMDEVICES
Excive: PEL, FRAMP({25.134), T, ZEROg - - S
STOPTF: TINFeGT, o254
- "'END$ e e e ememn e e ————— e e e e L e e e e n e o e s e <t A2 et i rm 4 20 ot 21 o m — - -
ALL THITIAL CONDITIONS HAVE BEEM DEFAULTED TO 7ERO,
o A A SIMULATEi : - m;;iﬂéééﬁméEC;” o)
PRINT: DEL, TOly TO2, - TO3, TOGG- = = oo e o m -
SAMPLE: STERP, 1g
s EMD G e _— B T T DU ———
o POST PROC . 4,358400 SEC. I I
ENMD: EXAMPLEA®
ToTAL 11,951800 SEC,
..... Nt o R
154 -

ve

e wue ve 60 2% sen oe
'

~

VI A. MECHANICAL EXTENSION DEVICE -

=
1

K
TO1
TO2
T03
TOY

]

+
.
~
-
-

- T 3ee

T4 e

(Equation Option)

= bo2420355 S .

Pie &

= Ty g - e
= T2 « -
= T3 %

= T4 4

e

T4 o PL , P2°, P3 , Py

C o= ATHY(hou223R5 6361275
. Ao3LULIESR e 2ZH?C88 "y T T T2y T3y

T b e 3AR2TS

TH o, PL , P2, P3 , P4

e ATRVIATHD3390 7" (e3R1276

EXAMPLE A

I R

ETAIMY (A GH2A38G (B 3A1278 7y T ho 2991465 Ty 3.2420657 7
holbHA278 o306 b 242056 T1 & T2 » T3

P b.2991486 5 33242(}55 s

s 2)1 S5

EEP9F165 Ty T 3. PAR0GE T,

6346275 4 b30GH165% 4, H.2421:685 , TY , T2 4 T3 ,
TA Pl TF2 4 P33, P4 -

¢

BINVIA,423305 60341278
Aa3bLA?7THR o Ae3INULI6S 7 L 2UPNBR
T4 1 P2, P3 Pa 4) s

y 3) 8

Lo?299165 3,242055
s TV Ty T2 oy TTA T,

VI B, DO NOTHING SYSTEM WITH SUBMODELS ~ EXAMPLE B

B, Do Nothing System with Submodels - Example B

The system block diagrammed in Figure 17 contains most of the ele-
ments contained within the MARSYAS library. One purpose of presenting
this fictitious model is to illustrate the use of submodels and how
they are interconnected within the main model. Most of the features of
MARSYAS described on the precediﬁg pages (with the exception of EQUATION)
have been incorporated in this example. It is intended to be used as a

learning aid for the beginning MARSYAS user.

155 -

961

Vi B. DONCTHING SYSTEM WITH SUBMTDELS-EXAMPLE B

. AD2 | GAMMA
12 2 | ML " aD } LM E’]—limo
——— | =—_..
NL1 PLA | 2 NL6
16 L
o
04
“““““ v
o1 51 -}
15 2 | RE |2 s Lj0A1]
NL3 |
BL2
_____ d
02
—b
o™
M
@
(@]
17 p s2 [T - T BETA |
S GANMA 1 |
| AD5 | |
|
AL I aD I TF IOGZ IOBZ
162 | 2 Nle 5L6 | |
i CA | |
L__m~-051__ciﬁ__.} |
— o]
V03

FIGURE 17. BLLCCK DIAGRAM DONOTHING SYSTEN

%

VI B, MODEL OF DO NOTHING SYSTEM

BEGIN: EXAMPLE B$

A USER DEFINED ELEMENTS$
DEVICE: AT, 1, 1, 1%
SUBROUTINE AT (AI,AO)
DIMENSION AI(1), AO(1)
AO(1) = ATAN (AI(1))

RETURN
END

A USER DEFINED FUNCTIONS
FUNCTION, DFSIN, 5%
FUNCTION DFSIN (D1, D2, D3, D4, TIMEX)
THIS FUNCTION IS ALSO PART OF THE MARSYAS LIBRARY
IF (TIMEX .LT. D4) GO TO 1
DFSIN = DL * SIN (D2 * (TIMEX - D4) + D3)

RETURN
DFSIN = 0.0
RETURN

END

MODEL: DO NOTHING MODELS$
INPUTS : 11,12,13,14,15,16,I7$
OUTPUTS: 01,02,03,04,05$

ELEMENTS: AD,
: SI,
PF,
ML,
RE,
TF,
S,
HS,
co,
1M,
DV,
1T,
CM,

AT,

AD1,AD2 ,AD3,AD9,AD12$

NL7(1.,2.), SI2(2.0,3.0)$

BL7(1.0)$

NL1$

NL3$

BL3(2,1.,2.,3.,4.,5.,6.)%

NL& (5,2, ,=2. 42, ,-2. ,46. ,42.,0. ,42., 42.,-2.)$
HL4(5,-1.1,-2.0,43.,-2.0,47. ,43,0.0,0.0, 0.0,0,0)$
NL2(1.0,2.0)$: €02(2.,3.)$

PL4(2.,-1.,3.)$%

DV1$

172

CM8(3.),CM9(4.),CM10(8.),CM11(5.) ,CM12(7.),CM13(6.),
CM15(9.)%

ATT(1.3)$

SUBMODEL: BETA; INPUTS: 1IB1,IB2,IB3; OUTPUTS: OBl,0B2,0B3$
SUBMODEL: GAMMA; INPUTS: IG1,IG2; OUTPUTS: 0G1,0G2$
SUBMODEL: ALPHA; INPUTS: IAl; OUTPUTS: O0A2$
CONNECT: I1, I#NLl1l, ADl, NL4, AD2, PL4, IGl, 0G2, AD3, BL7, NL7, 01$
12, 2#NL1$: NL4, CM10, AD1$: NL7, CM8, 1#DV1, AD3$
BL7, CM9, 2#DV1$

157 -

VI B, DMODEL OF DO NOTHING SYSTEM

CONNECT: I4, 1#NL3#1, AD1S$S : I6, 3#NL3S .
+ I5, 2#NL3#2, IAl, OAl, IG2S : OAl, IB3$S
0Al, 1#IT1l, ATT, 05$%
ATT, AD9$: IT2, CM12, AD9S
AD9, SI2, NL4, CM13, AD9S
: NL&4, CO2, CMIl, 2#IT2$: OGl, 04$
CONNECT: 1I7, IB2$: I3, AD12, NL2, CM15, ADI2%
: NL2, AD2$: OBl, 025
NL2, BL3, IBl, OB2, AD3$%
0B3, 03$
END$

MODEL: GAMMAS
INPUTS: IG2,IG1$
OUTPUTS : 0G2,0G1$ ‘
ELEMENTS: IT, NL6S : AD, AD5$: TF, BL6(4, 0.0, 1.0, 0,0, 0.0,
1.0, 1.0, 3.0, 2.0, 1,0)$
CA, CM1(2, +1)$
CONNECT: 1IGl, 1#NL6, AD5, BL6, 0G2$: BL6, CMl, AD5$
NL6, OGl$: IG2, 2#NL6S
ENDS$

MODEL: BETAS
INPUTS: IBl, IB2, IB3$
OUTPUTS: O0B3, OB2, OB1$
ELEMENTS: AD, AD4$: DV, NL5$, TF, BL&4(4, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0,
0.0, 3.0, 0.0, 2.0)$
AT, BL5$
SUBMODEL: GAMMA; INPUTS: IG1, IG2; OUTPUTS: OGL, 0G2$
CONNECT: 1IB1, AD4, 2#NL5, BL4, IGl, 0G2, OB2$: BLA4, BL5, AD4S
IB2, 1#NL5$: NL5, OB1S$: IB3, IG2% : OGl, OB3$%
END$

MODEL: ALPHAS

INPUTS: IA1$

OUTPUTS: OA1$

ELEMENTS: CM, CM2$: DS, BL2(2.,-3.)$
CONNECT: 1IAl, CM2, BL2, OAl$

END$

SIMULATE: DO NOTHING MODELS
EXCITE: 17, DSTEP (1.0, 2.0)$,
: Il, ZERO$: I2, FSTEP(1.0)$: I3, FSIN(0.8,60.0,0.5)$
14, DSTEP(2.0,5.0)$: I5, FRAMP(2.0)$
: 16, DAMP(1.0,2.0,3.0)$: I7, FPULSE(1.0,2.1)$
INTEGRATE: RK, TIMESTEP, 0.01$ '

158

VI B. MODEL OF DO NOTHING SYSTEM

CHANGE: RUN2; EXCITE: I7, DFSIN(1.0,1.0,0.0,1.0)$
CHANGE: RUN3; PARAMETERS, GAMMA, BL6(3, 2.6)$

TERMINATE IF: TIME .GE. 20.0$
END$

PLOT: LOGLOG(0.0,20.0,1), 01, 02, 03, 04, 05$
PRINT: I1, 12, I3, I4, IS, I6, I7$

SAMPLE: STEP, 10$

FOURIER: 04(8.0)$: 06(8.7)$

END$

END: EXAMPLE B$

159

VI C. VEHICLE STABILIZATION SYSTEM - EXAMPLE C

3

C. Vehicle Stabilization System - Example C

The Vehicle Stabilization System shown in Figure 18 is an example
of a system containing nested submodels and differential equations.
This is an example of mixing the block diagram and Equation methods to

solve a problem,

160

V!C;VEHICLE STABILIZATION SYSTEM-EXAMPLE C

CONTROL SYSTEM X1

SUBMODEL ACTUATOR STAGE 1 AND 3

191

s GIIETT) GeTETe G GiTmome e

MOTOR A q
10 - ACT1 ,) ! noRizoNTAL
. - . - i 1§ £
3§+ 5 SUBMODEL | GIMI ,;_(L ACT1 |, oEsOLVER ! ﬂ m
252 + 45 4 7 GIMBAL 3 2 GIMZ] ACT 2 3 2!1;—‘
R J a
LIMITER C g
-3 3 = g
! 3 E
i
A3 E
SUBMODEL GIMBAL 3 j
SUBMODEL CONTROLLER %
el ADT |
_GiM Y) S
<3 SY”+2Y=+3Y - 2X — SX /X y\ G]
_GiM2} 7 I'+Z = X h —
T & “- | 1
~10.3
— |
GAINS
VERTICAL
Vi

ca——— Cm——— — Ty v e

3
]

FIGURE .18 VEHICLE STABILIZATION SYSTEM BLOCK DIAGRAM

VI C. VEHICLE STABILIZATION SYSTEM - EXAMPLE C

BEGIN: VEHICLE STABILIZATION SYSTEMS
MODEL: CONTROL SYSTEM X1$
INPUTS: INL, IN2S OUTPUTS: Hl, V1$
ELEMENTS: RE, RESCLVER $
SUBMODEL: ACTUATOR STAGE 1 AND 3; INPUTS: Al, A2, A3;
OUTPUTS: ACT1, ACT2S
SUBMODEL: GIMBAL3; INPUTS: Gl; OUTPUTS: GIML, GIM2$
CONNECT: 1INl, Al, ACTl, 1#RESOLVER#1, H1$
: ACTl, 2#RESOLVER#2, Gl, GIML, A3$

IN2, A2, ACT2, 3#RESOLVER $

GIM2, V1$
END$

% THE FOLLOWING IS THE DESCRIPTION MODULE FOR SUBMODEL ACTUATOR STAGE 1 AND 3$

MODEL: ACTUATOR STAGE 1 AND 3%

INPUTS: Al, A2, A3S OUTPUTS: ACT1, ACT2$

ELEMENTS: AD, ADl, AD2$: TF, MOTORA(2, 0.0, 3.0, 5.0, 2.0, 4.0, 7.0)$
LM, LIMITERC(1., -3., 3.)$

SUBMODEL: GIMBAL3; INPUTS: Gl; OUTPUTS: GIML, GIM2$

CONNECT: Al, AD2$: A2, ADl, MOTORA, AD2, Gl, GIML, ACTL$
GIM2, ACT2$: GIM2, LIMITERC, AD1$: A3, ADLS

END$

* THE FOLLOWING IS THE DESCRIPTION MODULE FOR SUBMODEL GIMBAL3$
MODEL: GIMBAL3$
INPUTS: G1$ OUTPUTS: GIML, GIM2$
ELEMENTS: AD, AD1$: CM, GAIN5(-10.3)$
SUBMODEL: CONTROLLER; INPUTS: X ; OUTPUTS: Y, Z$
CONNECT: Gl, ADl, X, Z, GAIN5, ADI$: 2, GIM2$: Y, GIMLS
. END$ ‘

* THE FOLLOWING IS THE DESCRIPTION MODULE FOR SUBMODEL CONTROLLERS$
MODEL: CONTROLLER, EQUATIONS
INPUTS: X$ OUTPUTS: Y, Z$
EQUATION: Z' + Z = X$
5.0 ¥ Y' +2,0 *Y +3,0%Y=2,0%X-5,0%X%%2
ENDS$:

SIMULATE: CONTROL SYSTEM X1$

INITIALIZE: ACTUATOR STAGE 1 AND 3, MOTORA(1.5, 12.0)$
EXCITE: 1INL, FSTEP(5.0)$: IN2, FSIN (1.0, 3000.0, 0.0)$
TERMINATE IF: TIME .GT. 2.0$

ENDS

PRINT: (VEHICLE STABILIZATION SYSTEM, RUN ONE)$
: INL, IN2, Hl, Vi$

FOURIER: HI(1.3)$: V1(1.3)$

END$

END: VEHICLE STABILIZATION SYSTEMS$:
162 -

TABLE OF STAKDARD ELENENTS

163

791

g w.

/,/////

TABLE OF STANDARD ELENENTS
CLASS BLOCK DIAGRAM i QF #Cgf_ M E~ INCUT-0UTPUT LI5T OF PARAMETIRS IM T~ F ORDER IN WRICH THIY
SYMBOL INPUTS Pu%s MORIC RELATION APPEAR N THE ELTMENTS STATEMENT !
i
5
N N i N = MIGHEST POWER OF TRANSFER FUNCTION
Ecis‘ Zbi—fl—o.(?) - e i‘
TRANSFER | i() | i=0 oft) 1 1| TF =0 dt!
FUNCTION |7 71N — ‘
| 4
Z by AL (N, opge agtr O e g0 P Bigogr Dy e Bg)
i=0 b a; \
i=0 di !
1
CONSTANT | i(y) | < o) | 4 . M o) = K i) K :
MUBLTIFLIER |~ ' T ﬂ
!
i
i
, y i
ADDER N 1 AD o) = £ i (1) NONE
i=1 !;
A QuTPUT 3
IDZAL. () | olt) Kb
—] o B K
RELAY . = 1 ! IR W; ”
SV .) i
— ’% INFUT (<> 0) !
4. ;
ol |
' SLCPE = o {a,b,c) I
. r. 2 ‘\
cter (0 [P 1] oM (EITHER ©> 0,5 <0, ¢ >0 g
7| ore<0, b>0, c< () i
|

TABLE OF STANDARD ELEMENTS (CONT'D)

{
CLASS BLOCK DIAGRAM 4 OF # COF MNE - idPLUT- CUTPUT LIST OF PARAMETERS M THE GRDER IN WiICH
SYMBOL INPUTS |OUTPUTS| MONIC RELATION THEY APPEAR IN THE E EMENTS STATZHENT |
oft) = arcsin(i(t)) !
arcsing o) arcsie 12U 1 1 AS A= '(«r)<1 NONE
~—-< o(f) =
|
!
.o(4) = arccos {i{#)) l
: 1< <
| arccosmg (o) arccos (U] 1 AC ==t NONE :
o 0Se(0) =T i
O _ j
o{t) = arctan (i(1)) <
ARCTANGENT M o arcran P8 1 AT _l;_<o(f)<z°’- MOME 5
|
() .
INVERSE — -1 !2(?) !
- AN . O(f)> 2 1 lT 0(?) = tan — NONE
T ANGENT] (?) - '](?) NONE
C=o()<2q
i
SNERA!L i " 2
.GJ\.:RAJZ’ED 2] il o).__| (arbi- 1 D :[(?) penetip (1) n 1S THE NUMBER OF INPUTS
¢ DISTANCE in ¢ trary)

e n - v i — 2

991

TABLE OF STANDARD ELEMENTS (CONT’D)

BLOCK DIAGRAM # OF # OF MNE INPUT-OUTPUT LIST OF PARAMET =25 N THE ORDER
CLASS : v - o - : INWYICH THEY APPEAR IN THE
| H : = Y\}
SYMBOL INPUTS {CUTPUTS| MONIC RELATICN ELZMENTS STATEMTNT
¥
INTEGRATOR | —;- o) 1 i N o(f)=/i(?) MONE
[
= NUMBER OF FGINTS
o{t) :
/_7__ (n+]: X]Iy]lle Y2 g00¢ xnl Ynl
HYSTERESIS i(1) 1 1 HS Xicr Vig)
N s et
/ // STARTING POINTS
NOTZ: THE DEFINITICN OF THE PCINTS
COMPRISING THE CLGSED SYSTEM
CAM START AT ANY PCINT 2
THE FIGURE, THE CRDER 1IN
VHICH THE Pa, 2T3 ARE GIVEN
DETSRMINES THE DIRECTION OF
THE ..vs*::rzrsas

L91

TABLE OF STANDAFD ELEMENTS (CONT’D)

{
CLASS BLOCK DIAGRAM ¢ OF ¢ OF MNE - IMPUT-CUTPUT LIST OF PARAMETERS IN THi= CRDER M VWHICH
SYMBOL INPUTS [OUTPUTS] MONIC RTZLATION THEY APPEAR IN THE ELEMENTS STATEMENT
i
PO - i(t) &
N"il);'[:;gTOR !——(>J EXP -2-(-la"> 1 1 EX oft) = eil?) NONE
c ‘

LOGARITHMIC @-ﬂ> LOG \°(”> 1 1 LN o(i) = log_i(t) , >0 NONE 5

it oft) = sinfai(t) + b)

SINE O ame RO 1 i (a,b)
{i assumed to be in radians)

|

; o{f) = cos{ai(s) + b)
cosnE <o) cos 0| 1 co ‘ R (a,b) 5

. (i assumed %o be in radicns)

i
i
I
i

i t H=t i)+ b
raneent O g 191 1 ™ - ol = tonleily) + b) (a, b) |
(i ossumed to be in radions) !

e

femm s s e beme e em iR g r MO eete

¢ e ege € et w4 Tmemm et 4 e b ve e dm e b e b T .

1
K

891

TABLE OF STANDARD ELEMENTS (CONT'D)

CLASS BLOCK DIAGRAM # OF $OF | MNE- INPUT-CUTPUT LiST OF PARAMETERS IN THE ORDER IN WNICH
‘ SYMBOL INPUTS |[OUTPUTS| MONIC RELATION THEY APPEAR IN THE ELEMENTS STATEMENT
I
H >
. NORMNOES)
SWITCH IO NDV D LU 1 sw|o(n= T
0, i](¢)< T
SIGN CHANGER > 1 1 sC of#) = = i(1) NOMNE
i(1) oft) :
oft)=i(8) o 4(s)
Yy
(?ZIYZ)
TIME VARYING [i(%) o(t)
NS A ! 1 1 TV) (0, 13, Yy ot s Yo seeetn . ¥)
COEFFICIENT ”; - : (t10y¢) IRRARLY XS RALE PR
(F3v5)
i
TS

o i A L N ek s s e 1 s ey 4 e e e -

TABLE OF STANDARD ELEMENTS (CONT’D)

691

CLASS BLOCK DIAGRAM porF | 1OF | MNE- INPLT- QUTPUT LIST OF PARAMETERS IN THE ORDER IN WHICH
SYMBOL INPUTS gﬁ-'rg MONIC RELATION TAEY APPEAR iN THE SLEMINTS STATEMENT
of?)
$LOPE =1
Y vem
i {a,b) WHAERE c»>b
DEAD sPAcE | [I / o) | 1 DS - /l///./’
— / I > % O o AND/OR b MAY BE FCSITIVE OR MEGATIVE,
. i
iy _ 'Kll 3
iy 02T | _
NPUT RELAY o | 3 1 R | of0)= 3 n
i2(f),i3 (#)< T 1
'2 -)
i ,&i‘s
r\ l(i (?),i4(?)>o \p 3}
FUNCTION i2 o(t) - o e | ' Mo :
SWITCH —] [N AU ! FS | o))D\ (D) =0 i NENE 4
ia(t),is (3 if
i3 3 <o)]
|
i
: . n
Ip<7 iz 27 ;
SUTPUT ‘ j
SLAY 2 2 RO Hort) | iq @ 0 T |
o9 (1’) 0 I'I (i’) !‘

TABLE OF STANDARD ELEMENTS (CONT’D)

041

CLASS BLOCK DIAGRAM ¥ OF # OF MNE -~ INPUT-CUTPUT LIST OF PARAMETERS ON THE ORDER IN WHICH
L SYMBOL INPUTS OUTEUTS MONIC RELATION THEY APPZAR IN THE ELEMENTS STATEMENT
? iz(f)
i](?) 0(?) i-i (’?), 12 (?) # 0
—_— T 2] BM oft) = NONE
0, in =0
BOOLEAN________________________‘______ S R
RELAY R& iz(*)
,](,) oft) 0,in #0]
—_— Ak 2 1 BR oft) = _ NONE
‘ I-' (‘?), 12 =0
i3
i - I°]1> o, cos (i3) sin (i3) [i]
RESOLVER . 3 2 RE = k NCNE
'2 °2
T - fo
o —sin(i3) cos (i3) i
o (1)
~ 1, lim]> 1 I
THRESHOLD ﬁ 2/ 1 1 TH oft) =
-1 I + 1) L0, Jim]= 1 I>0)

141

{3)

fn
)
il

1723

CLASS BLOCK DIAGRAM # OF #OF | MNE- INPUT-OUTPYUT LIST OF PARAMETERS IN THE ORDER !N WHICH
SYMBOL INPUTS [OUTPUTS| MONIC RELATION THEY APPEAR IN THE ELEMENTS STATEMENT
ABSOLUTE | ;1) oft) =1; NONE
VALUE o \!/ = 1 | AB oft) = |i (9] NE
. ~Ts oft) = i(nT),
SAMPLE * i(t) 1-¢ of1) T
. 1 SH T< + 1
AND HOLD .] TZt<ln T, (T>0)
n=0,1,2 ..
. i!(?) oft) _ . . NONE
MULTIPLIER | ——> X |—>> 2 1 ML o(t) = iy(1) - ip(1) -
—
52(?)
iy (1) . . 1@ .
DIVIDER || = [0 2 1 DV ofth = — B ~ NCXE
-] '2
i5(t)

* |F SUCH A DEVICE IS INCLUDED IN THE SYSTEM, THE RUNGE KUTTA SCHEME
FOR INTEGRATION MUST BE SPECIFIED IN AN INTEGRATE STATEMENT IN THE
SIMULATION MODULE WITH TiMESTEP LESS THAN T,

LT

TABLE OF STANDARD ELEMENTS (CCNT’D)
. ‘Q
CLASS BLOCK DIAGRAM | # OF g:x?f_ MME ~ INPUT-OLTPUT LIST OF PARAMETERS IN THI SRDER IN 12y
SYMBOL. INPUTS| gyrg | MONIC RELATION THTY APPIAR B THI TLEMINTS STATININT
st
!
Ci‘;;TEARNT LI B U 1 CA oft) = ¢ % i(s) et i)
POYER : oft) = (i) *
% o)
FuncTion el a7 2 i PF z REAL * g
i(5)> o {
ll
:
of) (x-¥2) f}
] ~ 1 h
IBITRARY) !/ n = NUMBER OF POIMTS §
? HeW
Tomerion 0L /\l/c\j W1y 1 AF Al o Xir ¥i = CCORDINATES 27 POINTS !
GENERATOR ‘ I \\(/ e (nIX]IY]' Xz PYR e Xp« ‘/n)]
(X3p}"‘) I‘:
|
{ | !
\‘ dp it =dy |
MCRMAL i) 4 oft) | 1 MR | ol = § o.—d, < il)<d
RELAY BT ~ R R 2 (dy,dp)

i “d]ll(?)ﬁ - dz

‘{

T T S S, o SR

TABLE GF STARBARD EXCITATION FURCTIONS

173

TABLE OF STANDARD ZXCITATICN FUNCTIONS

FUNCTION AND

TYPE

MATHEMATICAL

LT

ARGUMENTS DESCRIPTION GRAPH
\
= (%)
dy |
FSTEP (d,) STEP INPUT F(t)=d;, 2 0. W%M/X
10 TIME
() A d, FREGUENCY, RADIANS/SEC
!» 4, PHASE ANGLE, RADIANS
. d.-
i
FSIN (g, dg, d3) SINUSOID F(9) = dysin(d, 1+d3) _6@}\
l . W TIME
F(1) A
FRAMP (d}) RAMP INPUT F(=dqt lo e
d= SLOPE
F(e) A
. dy -
= d]' 021t= d?_ 1
- FPULSE (dy, dp) SQUARE PULSE Fs) %
=0, t> d2

TIME

GLT

TABLE OF STANDARD EXCITATION FUNCTIONS (CONT’D)

FUNCTION AND

A RCUVENTS TYPE DESCRIPTION GRAPH
TRAIN (n, t1 ,yq o, ARBITRARY _ (Y, (t5.vg)
Tz PULSE TRAIN F(t)=y ‘ 4 % (t9:v9)
Yo, t vy ? (? L4 y) ?'y2 ‘
277373 - 1] 7(? ye)
5¢Y5
cerfne Yq) Y //
3 "3’ (?’IY6) ?71}')
3 4
£ Ly’ M
V, 9 10 % ’
Y \ y) v
1 _Z ~ (:Zd A{/ /d
2 n / :
PTRAIN (n, 1y, t5 | PERIODIC ARBITRARY . }IZM /ﬂ
PULSE TRAIN (t)=y //// 8 /
YZ: ?35- y3v : '
ooe tne ¥n) 5 6

TASLE OF STANDARD EXTITATION FUNCTICMS (CONT'D)

911

3 Y yne ety C o me s A Trom A
i CNTTION AND - MATHZWATICAL 2 A SK
| ARGUMENTS TYPE BESCRIPTioN GRA
| P dy = INVERSE CF TIME CONSTANT :
{ —cda d}‘
EXPONENTIAL “(e) = 2 v
=) F($y =4d
FEXP (a7. d2) FUNCTICN Phere / g
/ , |
0 TUAE \
g
|
||
i
20 |
i
{ L 5 (0,05t <dn) 4 7 %
DSTER (d,, d DELAYED STER (0,05t < dy WW/W’ 7? i
BSTER { i 2) F(?)z[‘ 2 // i ////// - g
) - > 0 . d 4
. ‘ kh s vz dz | 2 ,,
dy = FREQUINCY 3
F(9) A 2 T ’d
dy = PHASE CYCLE ,,
i
) 4 / :
DFSIN (dy, dy, d3, | DELAYED SINUSOID 0,0<t<dy . W /ﬂ/)ﬁ :
: ’ \ 7 i ‘.,
&) F(4)= - { . ///// /N /////f’/% -)
47 {81 sinldy (t-dg)+d3)ez ¢y) 4 Z’/// TilE i
|
!
I
]
F0 d=sicPE f}
|
CRANP (dy, dy) DELAYED RAMP 0,05t <dy) y
(= /ﬁ% s Z_____
dit—dn), 12 ¢ /
(ili-da) 1z 4o 3 TE

.

S B XC e RS

TABLE CF STANDARD EXCITATION FUNCTIONS (CONT'D)

LLT

TUNCTION AND MATHIVATICAL - |
ARGUMENTS TYPE DESCRIPTION | CrATH L‘.
F(f)is ”
i
4y L .
r{:0,05'?<(:§2&‘5’>c!3\il // ?\
DPULSE (dy, dp, d3) | DELAYED PULSE | F(1) Z |
=dy, dp < 1 < dg ﬂ/] % - E
dy d3 TIME I
#
)
F(t) 4 = INYERSE OF TIME CONSTANT |
, 1T
DELAYE ~dp(1-d3) q
PEXP (dy, dy, d3) EXPONENTIAL F(t) = dye ,/% !,
Z i
'/

| (7 7 ﬁ
TIME ,
dy = INVURSE OF TiAZ CONSTANT |

F9) dy = FREQUENCY, RADIAUS/SEC

d R ~

1 ;‘QI'E‘{\\ !
~dat AL T~ ‘
DAMP (dy, dy, d3) DAMPED SINUSOID | F(1) = dy° sin dg t "H”’EH mi]\ A~ !
Hl! HIfhite l\l' l ! i”’) ?.l \{{)w/ \ - ‘;{i
‘1/ J —_—— T T :
HIME u
P 55
- |
/ g
i
;
'f
F(1) A !
ZERO FGR F() = 0 '
ZERD ALL TIME V= ;

REFERENCES

(1) H. Trauboth and N. Prasad, "MARSYAS-A Software System for
the Digital Simulation of Physical Systems, " Proc. of Spring
Joint Computer Conference, May 1970,

(2) N. Prasad and J. Reiss, '""The Digital Simulation of Interconnected
Systems, ' Proc. of International Association of Cybernetics
Conference, Namur, Belgium, September 1970,

(3) H. Trauboth and N. Prasad, '"MARSYAS-A Software Engineering
System for the Digital Simulation and Analysis of Physical Systems, "
International Federation of Automatic Control (IFAC), Budapest
Symposium on Digital Simulation of Continuous Process (DISCOP),
Gyor, Hungary, September 1971,

(4} N. Prasad and H. Gabow, "ADEPT-An Algebraic and Differential
Equations Processor and Translator, ' Proc., of the 1971 Summer
Computer Simulation Conference, pp. 50-63, Vol. 1, Boston,
Massachusetts, July 1971,

(5) S. P. Singh, '‘Digital Simulation of Serpentuator Using MARSYAS, "

NASA TR R-414, Computation Laboratory, Marshall Space Flight
Center, Alabama, December 1972,

178 -

BIBLIOGRAPHIC DATA 1. Report No. 2. 3. Recipient’s Accession No.

SHEET EERC T2-12 PA-220 Z o7
4, Title and Subtitle 5. Report Date
SHAKE: a computer program for earthquake response analysis December 1972
. . 6.
of horizontally layered sites

7. Author(s) p.. B, Schnabel, John Iysmer and H. Bolton Seed B'EEH”mmgo$ama“w"Rem'

9. Performing Organization Name and Address 10. Project/Task/Work Unit No.
University of California
Earthquake Engineering Research Center 11. Contract/Grant No.

1301 South L6th Street
Richmond, Calif. 9L80L

12. Sponsoring Organization Name and Address 13. gype og Report & Period
overe
National Science Foundation

1800 G Street

Washington, D.C. 20550 14.

15. Supplementary Notes

16. Ab
srracts The program computes the response in a horizontally layered soil rock sys-

tem subjected to transient, vertical travelling shear waves. The method is based on
Kanai's soclution to the wave equation and the Fast Fourier Transform algorithm. The
motion uased as basis for the analysis can be applied to any layer in the system. Sys-
tems with elastic base and with variable damping in each layer can be analyzed. Equiv-
alent linear soil properties are used with an iterative procedure to obtain soil prop-
erties compatible with the strains developed-in each layer. A varied set of opera-
tions of interest in earthquake response analysis can be performed.

17. Key Words and Document Analysis. 17a. Descriptors

17b. Identifiers/Open-Ended Terms

17¢c. COSATI Field/Group

18. Availability Statement 19.. Security Class (This ?21. No. of Pares
. Report) i :
Release unlimited o UNCLASSIFIED .
\ o- 20. Security Class (This
Page)
UNCLASSIFIED A
FORM NTIS-35 (REV. 3-72) SCOMM-DC 14953-P72

THIS FORM MAY BE REPRODUCED

INSTRUCTIONS FOR COMPLETING FORM NTIS-35 (10-70) (Bibliographic Data Sheet based on COSATI

Guidelines to Format Standards for Scientific and Technical Reports Prepared by or for the Federal Government,
PB-180 600). .

1. Report Number. Each individually bound report shall carry a unique alphanumeric desigyation selected by the performing
organization or provided by the sponsoring organization. Use uppercase letters and Arabic numerals only. Examples
FASEB-NS-87 and FAA-RD-68-09. /)

/

2. Leave blank. //

3. Recipient's Accession Number. . Reserved for use by each report recipient.
4. Title and Subtitle. Title shoiﬁ\\indicate clearly and briefly the subject coverage of the report, and be displayed promi-
nently. Set subtitle, if used, in‘smaller type or otherwise subordinate it to main title. When a report is prepared in more

than one volume, repeat the primary.,title, add volume number and include subtjtle for the specific volume.

5. Report Date. [Lach report shall carry a\date indicating at least month and yeé. Indicate the basis on which it was selected

(e.g., date of issue, date of approval, dite of preparation.

6. Performing Organization Code. Leave blan

7. Author(s). Give name(s) in conventional order e.g., John R. Doe, orf].Robert Doe). List author’s affiliation if it differs

from the performing organization.
" 8. Performing Organization Report Number. Insert if pegforming organifation wishes to assign this number.

9. Performing Organization Name and Address.. Give namg, street, city, state, and zip code. List no more than two levels of

an organizational hierarchy. Display the name of the organizatioft exactly as it should appear in Government indexes such
as USGRDR-I.
10. Project/Task/Work Unit Number. Use the project, task and‘wofk unit numbers under which the report was prepared.
11. Contract/Grant Number. Insert contract or grant number undeyf ‘Wwhich report was prepared.
12. Sponsoring Agency Name and Address. Include zip code.
13. Type of Report and Period Covered. Indicate interim, finaf, etc., afd, if applicable, dates covered.

14. Sponsoring Agency Code. Leave blank. /

15. Supplementary Notes. Enter information not included /elsewhere but u ful, such as: Prepared in cooperation with . ..
Translation of . . . Presented at conference of . . . T/A be published in . \. Supersedes ... Supplements . . .

16. Abstract. Include a brief (200 words or less) factua,li summary of the most
If the report contains a significant bibliography or literature survey, mention it\here.

i

{gnificant information contained in the report.

17. Key Words and Document Analysis. (a). Descriptors. Select from the Thesaurus\of Engineering and Scientific Terms the
proper authorized terms that identify the major concept of the research and are sufficiently specific and precise to be used
as index entries for cataloging. .
(b). Identifiers and Open-Ended Terms. Use identifiers for project names, code namgs, equipment designators, etc. Use
open-ended terms written in descriptor form for those subjects for which no descriptor egists.
(c). COSATI Field/Group. Field and Group assignments are to be taken from the 1963 COSATI Subject Category List.
Since the majority of documents are multidisciplinary in nature, the primary Field/Group aysignment(s) will be the specific
discipline, area of human endeavor, or type of physical object. The application(s) will be ckoss-referenced with secondary
Field/Group assignments that will follow the primary posting(s). \

\,
18. Distribution Statement. Denote releasability to the public or limitation for reasons other than éqcurity for - example *‘Re-

lease unlimited’’. Cite any availability to the public, with address and price.

19 & 20. Security Classification. Do not submit classified reports to the National Technical

21. Number of Pages. Inscrt the total number of pages, including this one and unnumbered pages, but excluding distribution
list, if any.

22. Price. Insert the price set by the National Technical Information Service or the Government Printing Office, if known.

FORM NTis-35 (REV. 3-72) . USCOMM-DC 14952-P72

EARTHQUAKE ENGINEERING RESEARCH CENTER

SHAKE
A COMPUTER PROGRAM FOR

EARTHQUAKE RESPONSE ANALYSIS
OF HORIZONTALLY LAYERED SITES

by

Per B. Schnabel

John Lysmer
H. Bolton Seed

A report on research sponsored by the
National Science Foundation

Report No. EERC 72-12

December 1972

College of Engineering
University of California
Berkeley, California

e

b

